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Abstract——The increasing number of photovoltaic (PV) genera‐
tion and electric vehicles (EVs) on the load side has necessitated
an aggregator (Agg) in power system operation. In this paper,
an Agg is used to manage the energy profiles of PV generation
and EVs. However, the daily management of the Agg is chal‐
lenged by uncertain PV fluctuations. To address this problem, a
robust multi-time scale energy management strategy for the
Agg is proposed. In a day-ahead phase, robust optimization is
developed to determine the power schedule. In a real-time
phase, a rolling horizon-based convex optimization model is es‐
tablished to track the day-ahead power schedule based on the
flexibilities of the EVs. A case study indicates a good scheduling
performance under an uncertain PV output. Through the con‐
vexification, the solving efficiency of the real-time operation
model is improved, and the over-charging and over-discharging
problems of EVs can be suppressed to a certain extent. More‐
over, the power deviation between day-ahead and real-time
scheduling is controllable when the EV dispatching capacity is
sufficient. The strategy can ensure the flexibility of the Agg for
real-time operation.

Index Terms——Aggregated electric vehicle (EV), aggregator
(Agg), photovoltaic (PV), robust optimization, convex optimiza‐
tion.

I. INTRODUCTION

IN recent years, the penetration of renewable energy sourc‐
es (RESs) and distributed energy sources (DERs) on the

load side has increased significantly [1]. As an intermediate
entity between the end users and the power system operator,
an aggregator (Agg) has been proposed to manage the ener‐
gy of local RESs and DERs [2], and will play an important

role in future smart grids. However, the power outputs of
RESs have uncertain characteristics [3], [4], causing chal‐
lenges in the energy management of the Agg. Employing the
flexibility of electric vehicles (EVs) is widely considered as
an economical and efficient solution to the problem [5], [6].
Thus, this motivation has spurred researchers to develop an
optimal energy management strategy for EVs with a high
penetration of RESs.

In terms of system energy management, two mainly used
time scales are day-ahead and real-time. For the day-ahead
optimization, as some system parameters are unknown be‐
fore the day, the prediction-based day-ahead optimization
will be challenged by uncertainty. Multiple scenario based
stochastic programming and robust optimization are the ef‐
fective methods for dealing with the uncertainty in day-
ahead optimization. To maximize the consumption of renew‐
able energy, the optimal charging management of EV fleets
is described in [7] for multiple scenarios based on stochastic
programming. The uncertainties presented by the numerous
scenarios are processed by a Monte Carlo simulation. Both
static and dynamic scenarios are considered in [8] to handle
the uncertainties. Although the multiple scenario based meth‐
od is widely used in modeling system uncertainties, it has
potential risks if the uncertainties cannot be truly represented
by the limited set of scenarios. Robust optimization (RO)
control of EVs is used in [9] and [10] to reduce the impacts
of RES fluctuations on scheduling. Various day-ahead ener‐
gy management strategies are studied in [7] - [10]. However,
challenges on how to implement those strategies in a real-
time operation still remain.

In the phase of real-time operation, [11] schedules the EV
charging load to match the uncertain wind energy based on a
heuristic approach. The approach is not well-suited when ap‐
plied to large-scale systems, owing to the inherent inefficien‐
cy of the calculations. To meet the calculation speed require‐
ments for the coordinated charging of a large population of
EVs, [12], [13] adopt a myopic EVs charging strategy to
smooth the load curve in RES-connected systems. Neverthe‐
less, the flexibility of the EVs will decrease as the schedul‐
ing process proceeds. As a different approach from the real-
time scheduling strategies in [11] - [13], [14] establishes a
mechanism incorporating estimated day-ahead information to
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help reduce the uncertainties in the real-time scheduling
stage. References [15], [16] also propose a real-time energy
management of EVs with reference to useful power informa‐
tion from day-ahead scheduling. Taking the day-ahead sched‐
uling results as a baseline, the real-time operation results
shown in [14]-[16] still have some deviations. If the devia‐
tions can be exploited according to the operation require‐
ments, it will be more conductive to the Agg, managing the
energies of the numerous DERs.

Based on the day-ahead and real-time scheduling mecha‐
nism, a robust multi-time scale energy management strategy
for an Agg, distributed photovoltaic (PV), and EVs is pro‐
posed. The main contributions of this paper are twofold.
Firstly, a day-ahead robust optimization model which can
manage the inaccuracy of the forecasted PV output is estab‐
lished, to minimize the cost of the Agg in the electricity mar‐
ket. As a risk-averse approach to modeling uncertainties, ro‐
bust optimization has advantages in managing the stochastic
fluctuation of RESs. Secondly, a real-time convex optimiza‐
tion model is established to track the day-ahead scheduled
power plan. The developed convexification method is easy
to implement. Using the convex optimization model, the
power deviation between the day-ahead and real-time phases
can be adjusted according to operation demand. Moreover,
from the perspective of EV users, the over-charging and
over-discharging problems of each EV can be suppressed.

The remainder of this paper is organized as follows. Sec‐
tion II explains the overall system energy management strate‐
gy. The proposed day-ahead and real-time optimal schedul‐
ing model is provided in Section III. Section IV presents the
simulation setup and results. Conclusions are summarized in
Section V.

II. MULTI-TIME SCALE ENERGY MANAGEMENT STRATEGY

The Agg energy management framework consists of the
electricity market, the Agg, grid-connected EVs, PV genera‐
tion, and regular load, as shown in Fig. 1. Agg aggregates
and schedules PV, EVs, and regular load.

Power
dispatch

Power plan 

 

Electricity
market

Electricity
market

Agg

Agg

Regular load

EVPV

Pre-schedule Day-ahead
settlement

Day-ahead
(24 hours ahead)

Real-time
(every 15 min)

Real-time
settlement Regular load

EVPV

Fig. 1. Illustration of multi-time scale energy management process.

As an electricity price taker, the Agg first participates in
the day-ahead electricity market to import or export the elec‐
tricity, and then aims to track the day-ahead power schedule
in real time. It is presumed that Agg will be punished by the
utility if the deviations exceed a certain percentage of the

day-ahead settlement. In addition, we assume that it is not
economical for the Agg to reschedule the energy via partici‐
pating in the real-time energy market. The process of multi-
time scale energy management is as follows.

The day-ahead operation is carried out 24 hours before
the operation day. The Agg makes a power schedule for the
EV, to reduce the cost of electricity consumption based on
predicted electricity prices, PV outputs, EV charging require‐
ments, and regular load. However, the stochastic features of
PVs and EVs cause the deviations between the plan and real‐
ity. To reduce unexpected electricity costs and avoid being
punished, it is necessary to carry out a real-time operation.

During the real-time operation, the Agg utilizes the flexi‐
bility of the EVs. In particular, it implements optimization
scheduling for the charging/discharging power of connected
EVs every 15 min to track the day-ahead power plan based
on the actual behavior of the EVs, PV, and regular load.

For comparative analysis, two evaluation indexes for a
scheduling strategy in a real-time operation phase are de‐
fined in (1) and (2), respectively.

et = (P EV
t +P load

t -P PV
t )-P des

t (1)

Acc= 1-∑
tÎ T

|| et ∑
tÎ T

||P des
t (2)

where et is the tracking error at time step t, and is equal to
the actual Agg power including the EV power P EV

t , the regu‐
lar load P load

t , and the PV power P PV
t , minus the day-ahead

scheduling Agg power P des
t ; Acc is the tracking accuracy;

and T is the total number of scheduling time steps.

III. DAY-AHEAD AND REAL-TIME OPTIMAL SCHEDULING

MODEL FOR AGG

A. Day-ahead Cost Minimization Model for Agg

For the day-ahead scheduling, the Agg aims to minimize
the cost of the energy exchange to the external grid. The ob‐
jective function is expressed as follows. The objective of the
day-ahead optimization model is to minimize the cost of the
Agg.

min(λ t P͂
Agg
t Dt) (3)

s.t.

P͂ Agg
t =∑

iÎ N͂t

(P͂ d
it + P͂ c

it)+ P͂ load
t - P͂ PV

t "tÎ T (4)

-b t
£ P͂ Agg

t £ -
b t "tÎ T (5)

M d
it P

R
id £ P͂ d

it £ 0 "iÎ N͂ttÎ T (6)

0£ P͂ c
it £M c

it P
R
ic "iÎ N͂ttÎ T (7)

M c
itM d

itÎ{01} "iÎ N͂ttÎ T (8)

M c
it +M d

it = 1 "iÎ N͂ttÎ T (9)

P͂ c
it = P͂ d

it = 0 "iÎ N͂ttÏ[t͂ arr
i t͂ dep

i ] (10)

S͂ SOC
it = S͂ SOC

it - 1 + ( )ῆic P͂ c
it +

P͂ d
it

ῆid

Dt

E͂ cap
i

"iÎ N͂ttÎ T (11)
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-S
SOC

i
£ S͂ SOC

it £ -
S

SOC

i "iÎ N͂ttÎ T (12)

S͂ SOC
it ³ S͂ SOCdes

i "iÎ N͂tt = t͂ dep
i (13)

where λ t is the electricity price in the day-ahead market; P͂ Agg
t

is the transfer power between the Agg and grid at each time
step, P͂ Agg

t ³ 0 represents the power consumption of the Agg,
and P͂ Agg

t £ 0 represents the export power from the Agg to the
grid; Dt is the length of each time step in the day-ahead mar‐
ket; P͂ c

it ³ 0 and P͂ d
it £ 0 are the charging and discharging deci‐

sion variables of the ith EV at time step t, respectively; N͂t is
the predicted number of grid-connected EVs at time step t;
P͂ load

t is the predicted power of the regular load; P͂ PV
t is the

predicted PV output power;
-
b t and -b t

are the upper and low‐

er limits of the Agg energy exchange to the external grid, re‐
spectively; P R

ic and P R
id are the rated charging and discharg‐

ing power of the ith EV, respectively; M c
it and M d

it are the
complimentary 0-1 binary variables, and are used to guaran‐
tee that the charging and discharging of the ith EV are mutu‐
ally exclusive; t͂ arr

i and t͂ dep
i are the predicted arrival and depar‐

ture time of the ith EV, respectively; S͂ SOC
it is the state of

charge (SOC) of the predicted ith EV at time step t; E͂ cap
i is

the capacity of the ith EV; ῆicῆidÎ(01) are the efficiencies
of the charging and discharging processes, respectively; -S

SOC

i

and
-
S

SOC

i are the lower and upper limits of the SOC of the ith

EV, respectively; and S͂ SOCdes
i is the predicted desired SOC of

the ith EV at the departure time.
Notably, the day-ahead optimal dispatching model above

does not consider the uncertainty, and the optimized solution
may fail to cope with the uncertain fluctuations of PV out‐
put. Robust optimization has advantages in managing uncer‐
tainties in which the probability distribution of uncertain pa‐
rameters is unknown, and only the fluctuation range of the
parameters is given. The uncertain sets are used to describe
the fluctuation of the PV output. As long as the uncertain pa‐
rameters are within the range of the uncertain sets, the feasi‐
bility of the solution can be guaranteed [17]. The deviation
between the actual output and predicted output of PV is tak‐
en as an uncertain variable, and a box uncertainty set is used
to describe the uncertainty:

{P PV
t = P͂ PV

t + ξ t

-ξ t
£ ξ t £

-
ξ

t

(14)

where P PV
t and P͂ PV

t are the actual and predicted outputs of
the PV generation, respectively; ξ t is the deviation between
the actual and predicted outputs; and

-
ξ

t
and -ξ t

are the upper

and lower limits of the uncertainty, respectively.
Thus, P͂ Agg

t in the day-ahead optimization model is formu‐
lated as:

P͂ Agg
t =∑

iÎ N͂t

(P͂ d
it + P͂ c

it)+ P͂ load
t -P PV

t =

∑
iÎ N͂t

(P͂ d
it + P͂ c

it)+ P͂ load
t - P͂ PV

t - ξ t "tÎ T (15)

The introduction of the uncertain variable ξ t makes it diffi‐
cult to solve the optimization model. We formulate an equiv‐

alent model by using duals of (14) and (15) [18], leading to
the following tractable representation:

max
ξt

(-ξ t) (16)

s.t.

{ξ t £
-
ξ

t
λ+ξ

-ξ t £- -ξ t
λ-ξ

(17)

where λ+ξ and λ-ξ are the dual variables which are equivalent
to Lagrange multipliers. The optimization (16) and (17) is
further formulated as:

min
λ+ξ λ

-
ξ

(
-
ξ

t
λ+ξ - -ξ t

λ-ξ ) (18)

s.t.

λ+ξ - λ-ξ =-1 λ+ξ ³ 0λ-ξ ³ 0 (19)

From the weak duality of dual theory, any feasible λ+ξ and
λ-ξ in (18) and (19) will be the upper bound for the maximi‐
zation of (16) and (17). Hence, we can drop the minimiza‐
tion term in (18) and (19), and the achieved solution for
both the primal and dual will be the same:

P͂ Agg
t =∑

iÎ N͂t

(P͂ d
it + P͂ c

it)+ P͂ load
t - P͂ PV

t + -
ξ

t
λ+ξ - -ξ t

λ-ξ (20)

λ+ξ - λ-ξ =-1 "tÎ T (21)

{λ+ξ ³ 0 "tÎ T
λ-ξ ³ 0 "tÎ T

(22)

Therefore, a robust optimization model without uncertain
variables in (3), (5), (6)-(13), and (20)-(22) is established for
this day-ahead schedule. After solving the day-ahead model,
the power plan for the Agg can be obtained, and is denoted
as P des

t , which will serve as the targeted baseline in the real-
time operation.

P des
t = P͂ Agg

t "tÎ T (23)

B. Real-time Operation of Agg for EVs

In real-time operation, based on the actual behavior of the
EVs, load, and PV in real-time operation, the Agg employs
the flexibility in the charging and discharging of EVs in the
vehicle-to-grid mode to track the expected power plan.
Therefore, as defined in (1), the following equation holds for
each time step in the real-time operation if the tracking error
is 0:

é

ë
êê

ù

û
úú∑

i ∈ Nt

( P c
i,t + P d

i,t) + P load
t - P PV

t -P des
t = 0 (24)

where∑
iÎNt

(P c
it +P d

it) is the total EV power, which is equal to

P EV
t in (1); and Nt is the number of grid-connected EVs at

time step t.
As the PV power and regular load do not have the flexibil‐

ity, the Agg can only realize the tracking of the expected
power by scheduling the charging and discharging power of
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EVs. To facilitate the analysis, the expected power of the
EVs is defined as:

P EVdes
t =P des

t -P load
t +P PV

t (25)

where P EVdes
t is the expected power of the EVs at time step t.

Thus, the EVs’ tracking of P EVdes
t is equal to the Agg’s

tracking of P des
t in the real-time operation.

Moreover, to meet the energy requirements of the EVs
over a relatively long period, we use rolling horizon optimi‐
zation [19]. At the beginning of each time step, the Agg car‐
ries out real-time optimization for the current time step t and
the following rolling horizon H={t + 1t + 2...t +H}. Howev‐
er, only the EV dispatching power of the current time step
from the optimization solutions will be actually implemented
by the Agg. When the next time step arrives, the Agg carries
out the real-time optimization based on the updated available
information and prediction. Generally, the rolling-horizon
length can be set according to practical needs such as the
forecasting lead-time and/or the updating frequency. Here,
the prediction horizon is selected as four time steps in real
time, i. e., 1 hour. The rolling horizon-based real-time dis‐
patching model is formulated as:

min{ }∑
iÎNt

[ ](P d
it +P c

it)-P EVdes
t

2
+∑

τÎH
[ ]( )P d

iτ +P c
iτ -P EVdes

τ

2

(26)

s.t.

0£P c
ik £M c

ik P R
ic "iÎNtk Î{ }tτ (27)

M d
it P

R
id £P d

ik £ 0 "iÎNtk Î{ }tτ (28)

M c
ikM d

ikÎ{01} "iÎNtk Î{ }tτ (29)

M c
it +M d

it = 1 "iÎNtk Î{ }tτ (30)

P c
ik =P d

ik = 0 "iÎNtk Ï[t arr
i t dep

i ] (31)

S SOC
iτ = S SOC

iτ - 1 + ( )ηic P c
iτ +

P d
iτ

ηid

Dt

E cap
i

"iÎNt (32)

-S
SOC

i
£ S SOC

ik £ -
S

SOC

i "iÎNtk Î{ }tτ (33)

S SOC
it +H ³ S SOCpre

it +H "iÎNt (34)

The objective function (26) consists of two parts: the ob‐
jective of the current time step t, and the objective of the fu‐
ture time step τ, which is the time step of the rolling horizon
H. We use k to indicate the time steps from t to τ. The con‐
straints in (27)-(34) can be explained in a similar manner as
the constraints in (6) - (13). The real-time operation has a
high demand for computation time. It is preferable to re‐
move the nonlinear constraints in (27)-(34), so that the solv‐
ing time of the model can be shortened. Inspired by [20],
the binary variables M c

ik and M d
ik in (27)-(34) can be omitted

by adding barrier terms to the objective function (26). Thus,
the model is able to efficiently solve and satisfy (27)-(34) as
well. After the above operations, the real-time convex qua‐
dratic programming model is given as:

ì
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2
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||P c
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iτ

s.t. 0£P c
ik £P R

ic "iÎNtk Î{ }tτ

P R
id £P d

ik £ 0 "iÎNtk Î{ }tτ

P c
ik =P d

ik = 0 "iÎNtk Ï[t arr
i t dep
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S SOC
iτ = S SOC

iτ - 1 + ( )ηic P c
iτ +

P d
iτ

ηid

Dt

E cap
i

"iÎNt

-S
SOC

i
£ S SOC

ik £ -
S

SOC

i "iÎNtk Î{ }tτ

S SOC
it +H ³ S SOCpre

it +H "iÎNt

(35)

In that regard, the added barrier terms r1∑
iÎNt

||P c
ik and

r2∑
iÎNt

||P d
ik , k Î{ }tτ in the objective function (35) have two

barrier factors, r1 > 0 and r2 > 0. Evidently, the differences be‐
tween the objective function of (26) and (35) can be ignored
when r1 and r2 are small enough.

Then, we show that the optimal solutions of the model
(35) satisfy (27)-(34).

The introduction of binary variables in (27) - (34) guaran‐
tees that the charging and discharging of the ith EV are mutu‐
ally exclusive in real-time operation. Thus, the key is to
prove that the optimal solutions of (35) do not contain any
simultaneous charging and discharging for each EV.

Assuming that for any i and t, there are two types of solu‐
tions, i.e., (36) and (37), leading to the same tracking result
when the scheduling target for the ith power of the EV is
greater than 0. Notably, (36) is mathematically feasible, but
physically impossible.

{P c
i,t > 0

P d
i,t < 0

"iÎNt"tÎ T (36)

{P c
i,t > 0

P d
i,t = 0

"iÎNt"tÎ T (37)

Assume (36) and (37) can be represented as (38) and (39),
respectively. If m1 > 0 and m2 > 0, we have (m1 +m2)m2 ¹ 0.

{P c
it1 =m1 +m2

P d
it1 =-m2

(38)

{P c
it2 =m1

P d
it2 = 0

(39)

By substituting (38) and (39) into the objective function
of (35), the ith component of the objective function can be
obtained from (40) and (41), respectively:

(m1 -P EVdes
it )2 + r1 (m1 +m2)+ r2m2 (40)

(m1 -P EVdes
it )2 + r1m1 (41)

where P EVdes
it is the scheduling target for the ith EV.
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Considering that r1 > 0 and r2 > 0, we can infer that:

(m1 -P EVdes
it )2 + r1 (m1 +m2)+ r2m2 >(m1 -P EVdes

it )2 + r1m1 (42)

As the scheduling objective is to minimize the objective
function of (35), (42) shows that a pair of solutions with a
discharging power of 0 is the optimal solution in a set of so‐
lutions with the same tracking effect.

Similarly, the pair of solutions with the charging power of
0 is the optimal solution when the scheduling target for the
ith EV power is less than 0.

It has been proven that the optimal solution of model (35)
does not contain any simultaneous charging and discharging
for each EV, i.e., model (35) is exact in modeling the charac‐
teristics of EVs, even though there are not any 0-1 binary
variables in (35). The model (35) is a convex quadratic opti‐
mization model, which can be solved more conveniently and
quickly compared with the model (26)-(34).

Notably, the addition of barrier terms achieves a controlla‐
ble tracking error when the dispatching capacity is sufficient.
A concise proof is given below.

We assume that the dispatching capacity is sufficient at
time step t, i.e., the expected power of the EVs does not ex‐
ceed the upper limit of (35). As one of the charging and dis‐
charging power of the EVs is 0 at any time step, we find the
minimum of (35) from the perspective of charging as (43).
Similarly, from the perspective of discharging, the minimum
of (35) can be obtained from (44).

¶f

¶P c
t

= 2(P c
t -P EVdes

t )+ r1 = 0 (43)

¶f

¶P d
t

= 2(P d
t -P EVdes

t )- r2 = 0 (44)

where f is the objective function in (35); and P c
t =∑

iÎNt

||P c
it

and P d
t =∑

iÎNt

||P d
it are the total charging and discharging pow‐

er at time step t, respectively.
We further assume that the dispatching capacity of the

EVs is sufficient. If the expected power of the EVs at time
step t is within the feasible region surrounded by the con‐
straint of (35), compared with (1), we can conclude that by
rearranging (43) and (44), the minimum solution of any t sat‐
isfies e(t)=-r1 /2 when charging, and e(t)= r2 /2 when dis‐
charging, respectively. Otherwise, the minimum of (35) can‐
not be obtained, owing to the limitations of the feasible re‐
gion. From the characteristics of the objective function (qua‐
dratic function), we can infer that the solution in this situa‐
tion is P c

t =P d
t = 0, and that the absolute value of P EVdes

t is
less than r1 /2 when charging, or less than r2 /2 when dis‐
charging. Compared with (1), the tracking error will be with‐
in (-r1 /2r2 /2) for all the solutions.

Therefore, the value of the tracking error at each time step
can be controlled within [-r1 /2r2 /2] by setting the barrier
factors r1 and r2, if the dispatching capacity is sufficient.

The addition of barrier terms in (35) also avoids the over-
charging and over-discharging of each EV in real-time opera‐
tion. In that regard, both r1 and r2 are greater than 0, so any

non-zero value of charging and discharging power will in‐
crease the value of the objective function. As the objective
of optimization is to minimize the objective function, it is
necessary to reduce the absolute value of the charging and
discharging power for any i, t. This avoids the occurrence of
large charging and discharging actions in dispatching. Refer‐
ence [21] suggests that EV battery degradation will be accel‐
erated by over-charging and over-discharging actions. Thus,
this approach considers the interests of EV owners, and may
help to attract more EV owners to participate in dispatching.

C. Multi-time Scale Energy Management Implementation

To implement the multi-time scale energy management for
the Agg, the day-ahead and real-time optimal scheduling
models need to be solved in turn. The day-ahead cost mini‐
mization model for the Agg is a mixed-integer linear pro‐
gramming problem, whereas the real-time EV operation mod‐
el is a convex quadratic programming problem. The
YALMIP toolbox is combined with the intlinprog and guad‐
prog solvers in the MATLAB2014a platform to address day-
ahead and real-time optimization, respectively. Figure 2 pro‐
vides a flowchart illustrating the different phases and corre‐
sponding time scales of the proposed framework and the con‐
nection of the two optimization problems.
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Time
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optimization model (35)

Use YALMIP toolbox together
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and discard Pi,t , Pi,t of time steps 2-4

Fig. 2. Framework of multi-time scale energy management implementation.
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IV. CASE STUDIES AND DISCUSSIONS

A. Case Specification

In the simulation, the scheduling horizon of the simulation
is from 12: 00 one day to 12: 00 the next day. We use an
hourly interval in day-ahead optimization, and a 15 min in‐
terval in real-time operation. The rolling horizon is set to 1
hour. Figure 3 shows the predicted electricity price in the
day-ahead market. The actual and expected values of the PV
output are shown in Fig. 4. It is assumed that the prediction
error of the PV output is ±20%. The simulation parameters
for the EVs are obtained from [22]. The charging and dis‐
charging parameter settings for the EVs are listed in Table I.
In all simulation scenarios, the values of the barrier factors
r1 and r2 are set as 10, unless otherwise stated. The relation‐
ship between the values of the barrier factors and the real-
time scheduling results will be discussed in Section IV-F.

B. Day-ahead Scheduling Results

The day-ahead power scheduling plan for the Agg, with
different EV numbers, is shown in Fig. 5. A positive power

indicates that the Agg imports the electricity from the grid,
and a negative power indicates that the Agg exports the elec‐
tricity to the grid.

As shown in Fig. 5, the Agg needs to import electricity all
day, owing to the large load base. To reduce the electricity
purchasing cost in the day-ahead market, the Agg dispatches
EVs to charge when the electricity price is low (00: 00-07:
00), and to discharge when the electricity price is high (17:
00-23:00). At 12:00-18:00 and 06:00-12:00, the cost of pur‐
chasing power is lower than that of the regular load power.
The main reason is that there is a large amount of PV power
supplying loads during this period, which reduces the pur‐
chasing power of Agg from the external network. We can al‐
so see that, compared with the scheduling results for 50
EVs, the scheduled power for the Agg with 100 EVs has a
better performance in load balancing and PV self-consump‐
tion, owing to a sufficient scheduling capacity. In contrast,
with an excess scheduling capacity, the scheduling results
for 200 EVs result in a peak/valley inversion of the regular
load. Thus, we use 100 EVs as an example to carry out a de‐
tailed analysis of the real-time phase.

We calculate the cost for the Agg with different numbers
of EVs participating in scheduling compared with that with
uncoordinated charging of EVs, as shown in Table II. With
an increasing number of EVs in the day-ahead scheduling,
greater cost savings will be achieved. This is because a large
number of EVs improves the scheduling capacity of the
Agg, so that the Agg can respond to electricity prices more
actively.

C. Robustness Analysis

The uncertainties of the PV output are considered in the
day-ahead scheduling, by using an RO model. A cost com‐
parison between RO and deterministic optimization (DO) for
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TABLE I
PARAMETER SETTINGS OF EV

Parameter

Battery capacity (kWh)

Rated charging/discharging power (kW)

Charging/discharging efficiency

Arriving time (hour)

Departure time (hour)

Initial SOC

Desired SOC at departure time

Value

60

10

0.92

N(19, 1.52)

N(8.5, 12)

N(0.6, 0.12)

0.85

Note: N(x, y2) stands for normal distribution, where x is the mean value, and
y is the standard deviation.

TABLE II
COST COMPARISON WITH AND WITHOUT DAY-AHEAD SCHEDULING

No. of EV

50

100

200

Cost with
scheduling

(CNY)

9411.2

8588.2

6869.7

Cost without
scheduling

(CNY)

9729.0

9307.6

8370.7

Cost saving
(CNY)

317.8

719.4

1501.0
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dispatching 100 EVs is shown in Table III. A comparison of
power scheduling results between RO and DO is shown in
Fig. 6. The total operation cost for Agg obtained by RO is
greater than that obtained by DO. The increased cost comes
from the purchase of the electricity. The electricity selling in‐
comes from both RO and DO are 0. That is because the reg‐
ular load power is much larger than the power of the con‐
nected DERs.

By comparing the scheduling results for the power with
RO and DO, it can be seen that the difference in power
curves mainly exists in the period of PV output. The pur‐
chasing power of the Agg with RO is greater than that with
DO. That is because RO fully considers the worst situation
of PV output, i.e., 80% of expected PV output in this paper,
to cope with uncertain PV fluctuations in real time. Suffi‐
cient electricity can be guaranteed, even if the real-time PV
fluctuations are the worst case. Although the RO method in‐
creases the total operation cost of the Agg, it greatly increas‐
es the robustness of Agg under the fluctuations of PV output.

The output of EV power with RO is more conservative
compared to that with DO. EVs avoid large-scale charging
and discharging behavior in the period of PV output, but re‐
serve discharging power to fill the possible insufficient PV
output centrally such as in the period of 07: 00-09: 00. It
should be noted that there are not many parked EVs in the
period of PV output, so the power of EVs is not greatly af‐
fected by the uncertain fluctuations of PV power, resulting
in small changes to the power of EV.

D. Validity of Convex Quadratic Programming in Real-time
Operation

To verify the accuracy and validity of the relaxation of
the non-convex constraints in the real-time model, respective
simulations are conducted for a convex quadratic program‐
ming (CQP) model with barriers from objective function and
linear constraint (35), a mixed integer programming (MIP)
model with original objective function (26) and non-linear

constraint (27) - (34), and a contrastive MIP (CMIP) model
with barriers from objective function in (35) and non-linear
constraint (27) - (34). Simulation results from real-time opera‐
tion using CQP, MIP, and CMIP models are shown in Table IV.

The objective values obtained by the CQP and CMIP mod‐
els are identical for different EV numbers. It can be inferred
that the constraints (27) - (34) and the constraint of (35) are
equivalent with the same objective function in (35). The val‐
ue of the objective function obtained by the MIP model is
less than that obtained by the CQP and CMIP models. This
is because the barrier terms in (35) cause the value of the ob‐
jective to increase 10 times with the output of the EVs in
this simulation. In fact, the objective function of the CQP
model has no physical meaning. The term of physical signifi‐
cance in the objective function of (35) is the square of the
tracking error, which reflects the value of the tracking error.
It does not matter that the objective function values of the
CQP and CMIP models are quite different from those of the
MIP model, as the tracking error of the EVs obtained by the
CQP model is small.

Moreover, we can obtain P c
it P d

it = 0 in the solution of the
CQP model, which means that each EV has only one state
of charging or discharging at each time step in the optimal
solution, even if there are no specific constraints in the mod‐
el. Hence, the accuracy and validity of the CQP model are
verified.

The average solution time of the MIP and CMIP models
are almost the same, whereas the average solution time of
the CQP model is much shorter than that of the MIP and
CMIP models for different numbers of EVs. The effect of ac‐
celerating the solving process in the CQP model is more evi‐
dent as the number of EVs increases. This is because the 0-1
binary variables introduced by constraints (27)-(34) increase
the number of decision variables in the process of solving,
and the introduction of the 0-1 binary variables involves a
branch-and-bound solving approach. This leads to a longer
solution time, especially for the quadratic objective function
in this paper. After establishing the CQP model, there is no
binary variable, so the solving time of the CQP model is
much shorter than that of both the MIP and CMIP models.
As a real-time operation must be solved in a short time, the
improvement of the solution speed is meaningful. And the re‐
al-time operation of large-scale aggregated EVs is allowed
over a shorter time scale.

E. Analysis of Rolling Horizon Optimization Based Real-
time Control

Figure 7 shows a comparison of the tracking errors with
and without the implementation of the rolling horizon optimi‐

TABLE Ⅲ
COST COMPARISON BETWEEN RO AND DO

Model

RO

DO

Purchasing electricity
(CNY)

8588.2

8300.6

Selling electricity
(CNY)

0

0

Total cost (CNY)

8588.2

8300.6

Po
w

er
 (k

W
)

-1000

-500

0

500

1000

1500

2000

16:00 20:00 24:00 04:00 08:00 12:0012:00
Time

EV power with ROAgg power with RO;
EV power with DOAgg power with DO;

Fig. 6. Scheduling results of RO and DO.

TABLE IV
COMPARISONS BETWEEN CQP, MIP, AND CMIP SOLUTIONS

EVs

50

100

200

Objective value (kW2)

CQP

255556

417425

876943

MIP

70944

2429

3311

CMIP

255556

417425

876943

Average solution time (s)

CQP

0.21

0.55

1.57

MIP

15.24

85.54

676.13

CMIP

16.47

84.79

655.22
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zation-based real-time operation with 100 EVs. Power devia‐
tions of the day-ahead and real-time scheduling results are
presented, rather than the total power optimization results
from real-time operation. Owing to the uncertainties, the
transfer power between the Agg and the grid strongly devi‐
ates from the day-ahead scheduled power plan without the
rolling horizon optimization based real-time operation. The
large tracking error is mainly caused by the forecast error of
the PV output from 06:00 to 18:00. In contrast, the tracking
errors with rolling horizon optimization based real-time oper‐
ation are very close to those of an optimal solution with per‐
fect information. In the rolling horizon optimization based re‐
al-time operation, the actual charging and discharging power
of EVs can be adjusted according to the actual power of PV
output and load. Thus, the deviation from the day-ahead
power scheduling plan can be minimized, and the uncertain‐
ties can be managed.

F. Effect of Barrier Factors on Real-time Scheduling

To illustrate the effects of the barrier factors on the real-
time scheduling results, 100 EVs are respectively simulated
using a series of barrier factors. Selected scenarios, with dif‐
ferent values of barrier factors, are listed in Table V. To bet‐
ter demonstrate the controllability of the tracking error, it is
assumed that the real-time dispatching has two stages: stage
1 is from 12:00 to 24:00, and stage 2 is from 24:00 to 12:00
the next day.

As the Agg needs to track the day-ahead scheduling pow‐
er plan as accurately as possible to avoid extra costs in real-
time operation, it is necessary to pay attention to the track‐
ing error in the real-time process. The tracking errors of dif‐
ferent scenarios are shown in Fig. 8.

The tracking errors of all scenarios are within [-r1 /2r2 /2]
during the majority of the time steps, even in scenario D.
However, there are some tracking errors that exceed the ex‐
pected range at approximately 14:45, 16:00-16:45 and 11:15-
11: 30 in all scenarios except scenario C. It is noted that
these errors are all negative. Taking scenario B as an exam‐
ple, the real-time operation results for EV charging are
shown in Fig. 9.

Compared with the day-ahead scheduled power plan, there
are not enough EVs to provide sufficient capacity for real-
time operation in these periods. The Agg schedules almost

TABLE V
BARRIER FACTOR SETTING FOR DIFFERENT SCENARIOS

Scenario

A

B

C

D

Value of r1

Stage 1

1

10

100

8

Stage 2

1

10

100

12

Value of r2

Stage 1

1

10

100

12

Stage 2

1

100

100

8
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all connected EVs to charge with rated power. Some EVs
cannot be charged at rated power owing to SOC limitations,
but it is still not enough to track the power plan, resulting in
uncontrollable tracking errors. Naturally, there may be differ‐
ences in the EV scheduling capacity between the real-time
data and day-ahead forecast data, as EV owners are not com‐
pletely obedient to the Agg. Thus, the above phenomenon is
likely to occur when the obedience rate of EVs is low. In
scenario C, the Agg reduces the dispatching power for each
EV owing to large values of barrier factors, so the dispatch‐
ing capacity is relatively sufficient. And the tracking errors
of scenario C are within the expectations. Thus, it can be
verified that the tracking error in this model is determined
by the values of r1 and r2 when the dispatching capacity is
sufficient.

A negative error means that the Agg imports more electric‐
ity in the day-ahead market than it actually consumes. In
fact, this type of phenomenon is not accidental. To cope
with the uncertainties of PV output, the Agg considers the
worst case and imports a surplus amount of electricity in the
day-ahead market, resulting in a negative error when the PV
output is not in the worst case and the dispatching capacity
of the EVs is insufficient. However, sufficient electricity can
be ensured if the PV output is in the worst case. This strate‐
gy avoids the risk of the Agg in purchasing the electricity in
the real-time electricity market when the dispatching capaci‐
ty of EVs is insufficient.

The tracking accuracies obtained from the simulation re‐
sults are shown in Table VI. With an increasing value of bar‐
rier factors, the tracking accuracy decreases. In all simula‐
tion scenarios, the tracking accuracies are higher than 95%.
As a high tracking accuracy can be achieved in the real-time
scheduling phase, the Agg can avoid being punished for the
deviation between the day-ahead settlement and actual elec‐
tricity consumption in all of the simulation scenarios.

To verify the effects of the barrier factors on each EV, the
SOC of four randomly-selected EVs are compared and ana‐
lyzed for scenario A and scenario C.

Figure 10 illustrates the respective SOC changes of the
four EVs over all the scheduling times. Although the select‐
ed EVs are different as the initial SOC and initial scheduling
time, the change range of the SOC in scenario C is smaller
than that in scenario A for all EVs. As shown in (32), the
change in the SOC decreases when the charging and dis‐
charging power is suppressed by large values of barrier fac‐
tors. However, no matter how the values of the barrier fac‐
tors change, the SOC value of an EV leaving during the dis‐
patching period will meet the demand of the user (0.85) be‐

cause of constraint (34).

In actual operation, the values of r1 and r2 can be set to
larger values which satisfy the requirements for tracking ac‐
curacy. To ensure tracking accuracy, the over-charging and
over-discharging of EVs can be restrained, and the satisfac‐
tion of EV users participating in dispatching can be im‐
proved.

V. CONCLUSION

This paper presents a day-ahead and real-time energy man‐
agement strategy for an Agg to manage internal sources un‐
der the uncertainties of PV output. In particular, a day-ahead
RO model and a rolling horizon optimization based real-time
convex optimization model are respectively established. Case
studies validate that the day-ahead scheduling is robust. The
economic operation of the Agg in real-time can be guaran‐
teed, even if the PV output is in a worst-case scenario. The
rolling horizon optimization based convex optimization in re‐
al-time operation is more efficient and convenient for deter‐
mining the EV dispatching power, because of the relaxation
of the non-convex constraints. The tracking error of the day-
ahead scheduled power plan is controllable when the dis‐
patching EV capacity is sufficient, and the convex optimiza‐
tion model can restrain the over-charging and over-discharg‐
ing of EVs.
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