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Abstract——This paper is concerned about the impact of net‐
work parameter errors on the reliable operation and manage‐
ment of electricity markets. Specifically, the paper investigates
the so-called critical parameters in a network model whose er‐
rors cannot be detected or estimated due to the lack of local
measurement redundancy. Due to this property of critical pa‐
rameters, it will be impossible to detect, identify and correct er‐
rors in these parameters. Given the fact that electricity market
applications are heavily model-dependent, the locational margin‐
al prices (LMPs) can be shown to be seriously distorted in the
presence of critical parameter errors. Furthermore, if such er‐
rors are maliciously injected by adversaries, they will go unde‐
tected. Meanwhile, prices and revenues associated with power
transactions may be strategically manipulated. An approach for
quantifying the impact of critical parameters on the manage‐
ment of electricity markets is proposed. Conditions related to
network topology and measurement configuration leading to
the appearance of critical parameters are classified, and meter
placement strategies for avoiding critical parameters are pre‐
sented as well. Simulation results obtained by using IEEE test
systems are given to verify the proposed analysis and design
methods.

Index Terms——Anomaly detection, cyber security, electricity
market, parameter estimation, power system modeling, state es‐
timation.

I. INTRODUCTION

MAINTAINING an accurate database of model parame‐
ters is crucial for the reliable execution of a number

of power network applications such as state estimation (SE),
optimal power flow, contingency analysis, protective relay‐
ing, and control. In deregulated electricity markets, the mar‐
ket settlement is carried out by solving an economic dis‐
patch (ED) problem. The solution yields the optimal output
for each generator, as well as the energy price at each node
in the network, known as the locational marginal price
(LMP) [1], [2]. In the ED problem formulation, branch pow‐

er flows are expressed in terms of the injection shift factors
(ISFs), which are calculated using the network topology and
parameters. If the parameters of a network model contain
substantial errors, the ISFs can be significantly affected,
which will in turn bias the congestion patterns and the calcu‐
lation of the LMPs. Therefore, ensuring the accuracy of mod‐
el parameters is a pre-requisite for establishing an unbiased
and fair electricity market.

With heavier reliance on communication and information
systems, the cyber security of power system operation draws
increasing attention in recent years. Intrusion events into var‐
ious parts of the system with various objectives have been
reported in different countries [3]. In view of this trend, a
large volume of work has been dedicated to studying the po‐
tential attack paths and strategies, and possible defense mea‐
sures to enhance the security of power systems as cyber-
physical systems. Among them, a number of publications
have focused on the so-called false data injection (FDI) at‐
tacks [4]-[9]. There have also been studies on how FDI at‐
tacks can be utilized to manipulate the outcomes of real-time
electricity markets [10] - [12]. It is still an open question
whether this type of attack is actually implementable, since
it is generally necessary to manipulate and coordinate a
large number of measurements in real time so that the inject‐
ed false data is undetectable by the state estimator.

Even through establishing high security for a strategic sub‐
set of power system measurements has been extensively dis‐
cussed, there has not been much work reported on the securi‐
ty of the power system model database or its impact on sys‐
tem operation. This database resides and is managed at the
energy management systems (EMSs) of control centers,
which are generally better protected and thus more difficult
to access compared with the networks at the substation lev‐
el. However, such possibilities cannot be discounted or com‐
pletely ignored. In fact, the cyber attack against Ukraine
power grid in December 2015 [13] has revealed that knowl‐
edgeable cyber adversaries are capable to intrude into the
computer networks in control centers. Specifically, for the
vulnerability of model database under cyber attacks, the fol‐
lowing points require special attention:

1) While the access to model databases in control centers
is more difficult than that to substation measurements, it is
much easier to introduce a one-time change to a certain set
of model parameters than to continuously generate plausible
real-time false data in a large measurement set.

2) The model database can be accessed and modified by
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using the credentials of internal personnel, while there is no
legitimate means to modify the measurement dataset even
for internal personnel.

3) While false data in real-time measurements can only af‐
fect online applications, parameter errors can affect both on‐
line and offline applications, thus will have a wider impact
on power system operation.

In this paper, a new security vulnerability of the model da‐
tabase is identified, and its impact on electricity markets is
demonstrated. It involves the so-called “critical parameters”
in power network models, which have been formally defined
and studied in a recent publication [14]. In general, parame‐
ter errors can be detected when measurements do not fit the
model parameters [14] - [20]. Based on SE, statistical tests
can be developed to detect and identify the errors. However,
due to the lack of local measurement redundancy, errors as‐
sociated with certain parameters can neither be detected, nor
estimated, irrespective of the magnitude of the errors. In oth‐
er words, any errors in these parameters will remain “invisi‐
ble” and permanent. Such errors, whether due to unintention‐
al reasons or deliberate manipulation by adversaries, are like‐
ly to exert a long-lasting impact on the model-based applica‐
tions. In this paper, it is shown that undetectable errors in
critical parameters may have significant impact on the ISFs
and congestion patterns, thus can significantly bias the
LMPs of certain nodes. It should be noted that, unlike the
well-discussed FDI attacks which generally require coordinat‐
ed manipulation of a large number of measurements in order
to keep the stealthy property, the manipulation of critical
model parameters is, by nature, undetectable. Therefore, cy‐
ber adversaries may choose to manipulate any single critical
parameter without any coordination, which increases its
chance to be implemented.

In view of the vulnerabilities associated with critical pa‐
rameters, an effective method for ranking the significance of
impacts from different critical parameters on the market out‐
comes in a given system is subsequently presented in this pa‐
per. In order to eliminate critical parameters, they are further
classified into two distinct groups: those associated with criti‐
cal measurements (or critical k-tuples), and those associated
with irrelevant branches. The approaches to meter placement
are then discussed and shown to be effective for converting
critical parameters into non-critical ones. Simulation results
on the IEEE 57-bus system are given to illustrate the analy‐
ses and methods proposed in this paper.

The contributions of this paper are summarized below:
1) The conceptual linkage between the critical parameter

issues in model error identification and the security of elec‐
tricity market operation is explicitly established, which has
been overlooked in the existing body of literature.

2) An effective approach to evaluating the impacts of criti‐
cal model parameters on the operation of electricity markets
is developed.

3) The conditions for existence of critical parameters are
classified into two categories, and the guidelines of meter
placement for eliminating the criticality of these parameters
are proposed and discussed.

The motivations of cyber attacks can be broadly classified

into two categories: inflicting heavy damages to power sys‐
tems, and gaining economic benefits without being detected.
The analysis presented in this paper focuses on the security
threats based on the second type of motivations.

Compared with the related work [14] where the concept
of critical parameters is formally defined and validated
based on the theory of SE, the unique contributions of this
paper are the development of the conceptual linkage be‐
tween critical parameters and secure operation of electricity
markets, and the development of a systematic assessment
and mitigation framework for secure market operation.

It should also be noted that it is possible to have simulta‐
neous measurement and model parameter errors, but mea‐
surement errors are not explicitly discussed in this paper,
partly because they are irrelevant to the analysis of critical
parameters, and partly because this problem has been well
addressed in the previous work such as [14].

The rest of this paper is organized as follows. In Section
II, the formulation and solution of the parameter error detec‐
tion and identification problem are reviewed. In Section III,
the ED problem and LMPs are briefly described. Section IV
introduces the concept of critical parameters, shows its im‐
pact on the electricity markets, and proposes an approach to
quantifying the impact of critical parameters. Section V fur‐
ther studies various circumstances of critical parameters, and
proposes a simple meter placement approach to handle them.
Simulation results in the IEEE 57-bus system are given in
Section VI. Finally, Section VII concludes the paper.

II. SE AND PARAMETER ERROR DETECTION

In general, the principle of detecting model parameter er‐
rors is based on checking the network model against the
measurements. Based on the understanding of measurement
error distribution, statistical tests can be designed to detect
the inconsistency between the measurements and the model
parameters. The chi-square test [19] and the largest normal‐
ized Lagrange multiplier (LNLM) test [14], [16] - [18] are
two approaches developed based on this general principle. In
order to introduce these tests, the weighted least square
(WLS) SE problem needs to be reviewed first.

Suppose there are n state variables and m measurements
in a power system. Consider the set of measurement equa‐
tions:

z = h (xp)+ e (1)

where z is the measurement vector; x is the state vector; e is
the measurement error vector; p is the parameter vector; and
h is the nonlinear function linking the state variables to the
measurements. Assuming Gaussian distribution for the mea‐
surements, the maximum likelihood estimator of the state
variables can be obtained by solving the WLS SE problem
given below [14]:

{min
xp

J =
1
2
( )z - h ( )xp

T

R-1 ( )z - h ( )xp

s.t. p= p0

(2)

where R is the covariance matrix associated with the mea‐
surement errors; and p0 is the vector containing the original
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values of the parameters. The equality constraints are equiva‐
lent to assuming that all parameter values are error-free. At
the solution point x*, dropping the coefficient 1/2, the objec‐
tive function J * can be expressed as:

J * = (z - h (x*p0))
T

R-1 (z - h (x*p0)) (3)

For the ith measurement, we define

ei =
zi - hi ( )xp0

σ i

(4)

where σ i is the standard deviation of error of the ith measure‐
ment. Then, (3) can be rewritten as:

J * =∑
i = 1

m

e2
i (5)

If the parameters are actually error-free and the measure‐
ment errors obey normal distributions, J * will approximately
have a chi-square distribution with m- n degrees of freedom:

J *~χ 2
m- n (6)

With a specified confidence level 1- α, a threshold t can
be set up such that

CHI2CDF (tm- n)= 1- α (7)

where CHI2CDF (·) is the chi-square cumulative distribution
function.

If J * > t, it can be inferred with the false alarm probability
α that either the model parameters are erroneous or the mea‐
surements contain gross errors. Hence, it can be used as an
approach to the detection of model parameter errors.

For more accurate detection and identification of model
parameter errors, the LNLM test has later been developed
[14], [16]-[18].

The Lagrangian formulation of (2) can be written as:

L (xpλ)= 1
2
(z - h (xp)) T

R-1 (z - h (xp))- λT p (8)

where λ is the Lagrange multiplier vector associated with the
equality constraints p = p0. At the point of solution, the first-
order necessary condition must be met:

¶L ( )x*pλ
¶p

=H T
p R-1 (z - h (x*p))+ λ= 0 (9)

where H T
p is the Jacobian matrix of the measurement vector

with respect to the parameter vector p.
The measurement residual vector is defined as:

r = z - h (x*p0) (10)

Then, the Lagrange multiplier vector can be recovered by:

λ=-H T
p R-1r (11)

In the absence of parameter errors, the measurement resid‐
uals can be linked to the measurement errors as [19]:

r = Se (12)

S = I -H (H T R-1 H) -1
H T R-1 (13)

where S is the sensitivity matrix; I is an identity matrix; and
H is the Jacobian matrix of h with respect to the state vec‐
tor. Hence, the Lagrange multipliers will have a zero mean:

E (λT)=E ( -H T
p R-1r)= -H T

p R-1 E (r)=

-H T
p R-1 E (Se)= -H T

p R-1 SE (e)= 0 (14)

where E (·) is the expectation function.
The covariance matrix of the Lagrange multipliers can be

expressed as:

cov (λ)=E (λλT)=E (H T
p R-1rrT ( )R-1 T

Hp)=
H T

p R-1 cov (r) ( )R-1 T
Hp (15)

It is known that the covariance matrix of the residuals can
be expressed as:

cov (r)= SR (16)

Combining (15) and (16) will yield

cov (λ)=H T
p R-1 cov (r) ( )R-1 T

Hp =

H T
p R-1 SR ( )R-1 T

Hp =H T
p R-1 SHp (17)

Denoting cov(λ) as Λ, the normalized Lagrange multiplier
(NLM) associated with the ith parameter can be obtained by:

λN
i =

λ i

Λ ii

(18)

where λ i and Λ ii are the elements of λ and Λ, respectively.
In the absence of parameter errors, it should follow a stan‐

dard normal distribution. Hence, for a specified confidence
level 1- α, a threshold t can be set up such that

Φ (t)= 1-
α
2

(19)

where Φ (·) is the standard normal distribution function.
If for any i, | λN

i |> t, an error is detected, and the parameter
associated with the LNLM will be identified as the errone‐
ous parameter.

III. ECONOMIC DISPATCH AND LOCATIONAL MARGINAL

PRICE

In current industrial practice, the electricity market is set‐
tled by solving an ED problem, where a DC power flow
model is used. For simplicity, consider the lossless ED prob‐
lem:

ì

í

î

ï

ï

ï
ï
ïï

ï

ï

ï
ï
ïï

min
sj
∑

j = 1

N

cj sj

s.t.∑
j = 1

N

sj=∑
j = 1

N

dj « ξ

smin
j £ sj £ smax

j « νmin
j νmax

j j = 12...N

f min
l £∑

j = 1

N

Ψ lj ( )sj - dj £ f max
l « μmin

l μmax
l l = 12...L

(20)

where L is the number of branches; N is the number of bus‐
es; cj is the marginal generation cost at bus j; sj is the power
generation at bus j; dj is the load at bus j; f min

l and f max
l are

the lower and upper limits of the power flow along branch l
determined by security constraints, respectively; smin

j and smax
j

are the lower and upper limits for the power generation at
bus j, respectively; Ψ lj is an entry in the ISF matrix repre‐
senting the incremental power flow along branch l induced
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by per-unit increment of power injection at bus j; ξ is the La‐
grange multiplier associated with the power balance con‐
straint; νmin

j and νmax
j are Lagrange multipliers associated with

the generation capacity constraints; and μmin
l and μmax

l are the
Lagrange multipliers associated with the branch capacity con‐
straints. The determination of the ISF matrix Ψ is solely de‐
pendent on the network model:

Ψ =Bf AB-1 (21)

where Bf = diag(b1,b2,…,bL) is the primitive susceptance ma‐
trix; A is the branch-bus incidence matrix; and B is the nod‐
al susceptance matrix. Since the DC power flow model is ad‐
opted, only branch reactance is involved in the computation
of Ψ.

The solution of (20) will not only provide the generation
dispatch that yields the lowest total cost for the entire sys‐
tem, but also yield the LMPs as by-products. The LMP at a
given bus j can be recovered by [1], [2]:

LMPj = ξ * +∑
l = 1

L

μmin*
l Ψ lj -∑

l = 1

L

μmax*
l Ψ lj (22)

where ξ *, μmin*
l , and μmax*

l are the values of ξ, μmin
l , and μmax

l at
the solution point of (20), respectively. μmin*

l and μmax*
l are al‐

so known as the shadow prices associated with the conges‐
tion along the corresponding branch. They represent the in‐
crement of the total cost with per-unit incremental change of
the power flow limit of the l th branch. When the power flow
along a branch reaches its limit, i. e., the corresponding in‐
equality constraint is binding, the shadow price μmin*

l or μmax*
l

will be nonzero. When there is no congestion across the sys‐
tem, all the terms associated with the congestion shadow
prices will be zero, and ξ * will be the LMP for all nodes.
Obviously, the branch congestion pattern has a significant
impact on the LMPs.

IV. CRITICAL PARAMETER AND ITS IMPACT ON SECURITY OF

ELECTRICITY MARKETS

Although various types of methods for detection and esti‐
mation of parameter errors have been proposed, their capabil‐
ities are always limited by the redundancy of measurements.
The concept of critical parameters is used to describe one
type of such situations [14]. The Lagrange multiplier vector
λ can be expressed as a linear combination of parameter er‐
rors and measurement errors [14]:

λ=Λpe -H T
p R-1 Se (23)

where pe is the parameter error vector.
Critical parameters can be identified by checking the rows

or columns of the matrix Λ. For the ith parameter, if the cor‐
responding column (or equivalently, the corresponding row
since Λ is symmetrical) Λ i is a null vector, this parameter is
a critical parameter, and any error in this parameter cannot
be detected. The rationale is that if there is an error pe, i ≠ 0,
the component that is induced into λ will be

λ( )i = peiΛ i = 0 (24)

Hence, it will not be reflected in λ. Furthermore, since
Λ ii = 0, it is also impossible to evaluate the NLM associated
with this parameter.

Note that the incapability of detecting an error in a critical
parameter is not a limitation of the LNLM approach, but
rather a limitation of the measurement configuration of the
system. This issue cannot be resolved by developing an alter‐
native method, if the measurement configuration has already
been specified. For example, if the augmented SE approach
[19]-[21] is used to estimate a critical parameter, the system
will become unobservable.

Apparently, if errors are present in critical parameters,
they are likely to remain in the database permanently with‐
out being detected. If it occurs, the LMPs in the electricity
market can be biased. From (22), it can be observed that the
impact of undetectable parameter errors on LMPs are three-
fold:

1) Congestion patterns. In the ED solution, the Lagrange
multipliers (shadow prices) μmin*

l or μmax*
l will be zero if the

corresponding branches are not congested, i. e., the corre‐
sponding flow constraints in (20) are not binding. On the
other hand, μmin*

l or μmax*
l will be nonzero if the corresponding

branches become congested, i.e., the corresponding flow con‐
straints in (20) become binding. In the presence of critical
parameter errors, those flow constraints which are not actual‐
ly binding can appear to be binding, and vice versa. In other
words, with parameter errors, branches that are not actually
congested can appear congested, and vice versa. This bias
will abruptly change Lagrange multipliers μmin*

l or μmax*
l , from

zero to nonzero, or the other way around, creating a jump in
the second or third term of (22), thus creating a jump in the
LMPs.

2) Congestion shadow prices. For those branches that are
congested, the Lagrange multipliers μmin*

l or μmax*
l indicate the

sensitivity of the objective function to the binding con‐
straints in the ED problem (20). In other words, they show
how sensitive the total generation cost is, if the flow limit of
the congested branch changes. When parameter errors are
present, the shape of the flow constraints will change, since
their expressions contain the ISFs which are determined by
the model parameters. As the flow constraints are reshaped,
the sensitivity of the objective function to the constraints
will also change, which is then reflected in the changes of
the Lagrange multipliers (shadow prices) μmin*

l or μmax*
l . This

will result in continuous (instead of abrupt) changes of the
second or third term of (22), thus affecting the LMPs.

3) ISFs on their own. Besides exerting indirect influences
on LMPs through the Lagrange multipliers μmin*

l or μmax*
l , the

ISFs also appear in (22) by themselves. This implies that
even with specified shadow prices of congested branches
(fixed μmin*

l or μmax*
l ), the change of ISFs will still influence

the second and third terms of (22), thus contributing to the
distortion of LMPs. The interpretation for such influences is
that ISFs represent the contributions of incremental bus injec‐
tions to incremental branch flows, thereby representing the
effect of selling or purchasing electricity at a specific bus on
the degree of congestion in a specific branch.

Therefore, there may be two types of situations jeopardiz‐
ing electricity market operation:

1) Random errors in critical parameters due to natural or
unintentional reasons such as device aging, variation of am‐
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bient conditions, unreported device status changes, or human
entry errors. An unfair trading environment will be formed
for different market participants.

2) False values in critical parameters injected by cyber ad‐
versaries. This can occur when credentials of internal person‐
nel are leaked to cyber adversaries, and the model parameter
database is hacked. In this case, electricity market operation
can be manipulated to create unlawful economic benefits for
cyber adversaries.

In order to evaluate the impacts of critical parameter er‐
rors on market operation, the relationships between critical
parameters and market LMPs should be obtained. Such rela‐
tionships are very complicated: they are discontinuous at
points where the congestion pattern is changed. Therefore, it
is very difficult, if not impossible, to derive this relationship
in a closed-form. In order to find this relationship, numerical
analysis is developed and exploited in this paper. This analy‐
sis is important, since not all critical parameters may signifi‐
cantly impact market operation, and only those with high im‐
pact need to be treated by additional measures. In this case,
the worse-case analysis is applied: for a given system with
its typical power flow profile, the greatest deviations of
LMPs resulting from possibly undetectable errors are found
for each critical parameter.

The steps for obtaining the relation between LMPs and er‐
rors in critical parameters, as well as identifying the critical
parameters with high impacts on market operations, are sum‐
marized as below.

Step 1: for a given system, denote the set of bus numbers
as N. The LMPs in the original case can be obtained by do‐
ing the following.

1) Set all the parameters at their original values, and form
ISF matrix Ψ using (21).

2) Solve the ED problem (20).
3) Compute the LMPs for each node of the system using

(22). Denote the LMP of bus j as LMPj.
Step 2: form matrix Λ using (17).
Step 3: identify all the critical parameters by identifying the

null columns of Λ. Since the DC power flow model is ap‐
plied in the market analysis, only reactance-type parameters
need to be considered. Denote the critical parameter set as ϒ.

Step 4: for each critical parameter, determine its plausible
interval using the rules of thumb. A simple example is that
line reactance cannot be negative. In addition, typical ranges
of reactance per length for overhead transmission lines of a
given voltage level are readily known, and based on the esti‐
mated lengths of the lines, the plausible interval for the reac‐
tance of each line can be determined. Denote the plausible
interval of parameter pi as pi =[pmin

i pmax
i ].

Step 5: for each critical parameter pi, do the following.
1) Select an increment Δpi, such that pmax

i - pmin
i = cDpi

(c∈). Set parameter error step index k = 0.
2) Set pi = pmin

i + kDpi, and form ISF matrix Ψ using (21).
3) Solve the ED problem (20).
4) Compute the LMPs for each bus of the system using

(22). Denote the LMP of bus j as LMP (ik)
j .

5) Compute the deviation of the LMPs due to the parame‐
ter error: DLMP (ik)

j = LMP (ik)
j - LMPj.

6) Find the largest differences of LMP deviations between
different nodes when pi = pmin

i + kDpi:

DLMP( )ik = max
jÎ{12N}

{DLMP ( )ik
j }- min

jÎ{12N}
{DLMP ( )ik

j } (25)

7) If k < c, set k = k + 1, and go to 2); otherwise, find the
largest difference of LMP deviations between different nodes
induced by possible errors in critical parameter pi:

DLMP ( )i
max = max

k Î [ ]0c
{DLMP( )ik } (26)

8) Proceed to the next critical parameter in ϒ.
Step 6: rank all the critical parameters in ϒ according to

DLMP ( )i
max, and the parameters corresponding to greater values

are those with higher impact on the security of electricity
market operation.

The whole procedure is illustrated in Fig. 1. In the above
procedure, DLMP ( )i

max is developed as an indicator of the im‐
pact of a critical parameter on electricity market, in that it
represents the worst case which may be taken advantage of
by adversaries. For example, if the false parameter value
that corresponds to DLMP ( )i

max is adopted in the model data‐
base, the maximum illegal revenue can be made by conduct‐
ing a bilateral transaction or purchasing the financial trans‐
mission rights between the bus that has the most positive
LMP deviation, which corresponds to the first term of the
right-hand side of (25), and the bus that has the most nega‐
tive LMP deviation, which corresponds to the second term
of the right-hand side of (25).

It should be mentioned that the computational efficiency
of the above procedure is not considered as a major factor
limiting its implementation. The reasons are two-fold.

1) Searching for the high-impact critical parameters is not

Start

End

Y

Y N

N

Step 5

Step 1: obtain the original
LMPs by solving the ED

problem (20) using
original parameter values

Step 2: form matrix
Λ using (17)

Step 3: identify critical
parameter set ϒ

Step 4: determine the
plausible interval
of parameter pi

Find the largest difference
between LMP deviations

at pi = pi
min + kΔpi,

denoted as ∆LMPj
(i, k)

Solve the ED problem (20)
and evaluate the LMP at

every bus, LMPj
(i, k)

Select a critical parameter
pi. Set pi = pi

min + kΔpi

Select a new critical
parameter pi. Set k = 0

Are all parameters
in ϒ iterated?

Does pi
reach pi

max ?

k=k+1

Step 6: rank all the
parameters in ϒ

according to ∆LMPmax
(i)

Fig. 1. Flow chart for identifying high-impact critical parameters.
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a time-sensitive task. It is performed in the time scale of sys‐
tem planning (months), not in the time scale of system oper‐
ation.

2) The determination of the impact of each individual pa‐
rameter is completely independent, thus fully parallel or dis‐
tributed computing architecture can be used if necessary.
Specifically, Step 5 of the procedure, which carries a vast
majority of computational burden, can be performed fully in
parallel for each critical parameter pi.

Another concept related to critical parameters is the “criti‐
cal k-tuples” of parameters. The definitions and properties of
“critical k-tuples” are also given in [14]. They are a group
of parameters whose errors can be detected, but cannot be ef‐
fectively identified. In other words, their errors can be easily
detected, but cannot be easily distinguished from one anoth‐
er. In the cyber security of system operation, critical k-tuples
are less important than critical parameters, because once the
errors are detected in a critical k-tuple, it is always possible
to physically inspect each of the parameters in this tuple,
and find out the true error source. For critical parameters,
however, even the detection is impossible, which leads to
the possibility of errors staying unnoticed permanently.
Therefore, critical parameters are the focus of study in this
paper.

Finally, it should be mentioned that the LMP deviations re‐
sulting from parameter errors will change with respect to
load scenarios. However, as the principle of analysis remain
unchanged, the security assessment framework presented
above can be immediately extended to incorporate multiple
load scenarios. For example, the system operator may pick
the load curve of a typical day, and the index defined in (26)
can be evaluated for each time interval of the day:
DLMP ( )i

max =[DLMP ( )i
max1DLMP ( )i

max2DLMP ( )i
maxD]T, where D

is the number of intervals. Finally, the comprehensive securi‐
ty risk index can be obtained by summing up all the entries
of DLMP ( )i

max, because when a permanent parameter error is
introduced, the total distortion of market revenue of a day
will be the sum of the distortion of the market revenues dur‐
ing each interval. If needed, the proposed security assess‐
ment procedure for critical parameters can also be extended
to AC/DC power systems. The SE problem (2) and the ED
problem (20) have to be replaced by their respective formula‐
tions incorporating DC components, which have been stud‐
ied in detail in [22], [23] and [24], [25], respectively. Other
than that, the proposed security assessment procedure re‐
mains effective.

Based on the above analysis, meter placement can be de‐
veloped for converting the critical parameters which have po‐
tential great effects on the market to non-critical parameters,
as will be discussed in the next section.

V. TYPES OF CRITICAL PARAMETERS AND METER

PLACEMENT STRATEGIES

In order to develop methods for addressing the critical pa‐
rameter issue, it is important to understand how they may oc‐
cur in a network. Insights can be gained by looking at the
expression of the Lagrange multipliers associated with pa‐
rameter errors (11). For the ith entry of λ,

λ i =-∑
j = 1

m 1

σ 2
j

Hpjirj (27)

where rj and Hpji are the elements of r and Hp, respectively.
Actually, the Jacobian matrix Hp is a sparse matrix, and in

its ith column, only those entries corresponding to the mea‐
surements associated with the ith parameter (i.e., the measure‐
ments which are functions of the ith parameter) will be non‐
zero. Define this set of measurements as Γ i, then (27) can be
rewritten as:

λ i =-∑
jÎΓi

1

σ 2
j

Hpjirj (28)

Based on (28), it can be observed that two major catego‐
ries of critical parameters exist. They will be referred to as
“SE-relevant critical parameters” and “SE-irrelevant critical
parameters”.

A. SE-relevant Critical Parameters

In [14], the concept of critical parameters was first devel‐
oped in analogy to the well-known concept of critical mea‐
surements in SE. A measurement is referred to as a critical
measurement if its error is always undetectable. Due to the
lack of redundancy, the residual of a critical measurement is
identically zero. It has exclusive influence on the state esti‐
mate, since the state estimate always satisfies the equation of
a critical measurement. Therefore, critical measurements are
of great concerns in SE, in that their errors cannot be detect‐
ed and will impact the SE solution.

Similar situations can be found for model parameters.
Based on (28), the simplest and most common situation is
when Γ i ≠∅, but all the measurements in Γ i are critical mea‐
surements, as shown in (29), since the residuals of critical
measurements are identically zero.

λ i =-∑
jÎΓi

m 1

σ 2
j

Hpjirj º-∑
jÎΓi

m 1

σ 2
j

Hpji × 0= 0 (29)

In this case, although this parameter is associated with
some measurements, its Lagrange multiplier will be identical‐
ly zero, hence its error cannot be detected. Meanwhile, since
it still appears in measurement functions, the state estimate
can be significantly biased by its error. Therefore, its proper‐
ties are exactly analogous to the properties of a critical mea‐
surement. More complicated situations of this type appear
when a parameter is associated with a critical pair (or more
generally, a k-tuple) of measurements (the definitions can be
found in [15]), whose residuals are not identically zero, but
always satisfy the following condition:

λ i =-∑
jÎΓi

m 1

σ 2
j

Hpjirj º 0 (30)

In this paper, the critical parameters which may affect the
SE solution are defined as SE-relevant critical parameters.

Definition 1: for a critical parameter pi, if Γ i ≠∅, this pa‐
rameter is referred to as a SE-relevant critical parameter.

Remark 1: a SE-relevant critical parameter can be elimi‐
nated by turning at least one of the associated critical mea‐
surements into non-critical, or breaking at least one of the as‐
sociated critical pair/k-tuple of measurements.

The rationale for Remark 1 is straightforward. If zj ∈Γ i,
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and it is converted into a non-critical measurement, rj ≡ 0
doesn’ t hold; and since Hp, ji ≠ 0, λ i ≡ 0 doesn’ t hold any
more, thus pi becomes non-critical. A similar conclusion can
be drawn for more complicated situations when a critical
pair/k-tuple of measurements is broken and (30) no longer
holds.

Obviously, based on the above analysis, the problem of re‐
moving SE-relevant critical parameters is converted into the
problem of removing the criticality of the associated mea‐
surements. For the latter, meter placement approaches have
been developed in literature. For example, the method de‐
scribed in [26] can be used which can provide the optimal
meter placement strategy for this matter.

B. SE-irrelevant Critical Parameters

Based on (28), it can be observed that the other type of
situations that can lead to critical parameters is the absence
of associated measurements. Specifically, if Γ i =∅, then
there will be no term on the right-hand side, thus (30) can
be rewritten as:

λ i =-∑
jÎÆ

1

σ 2
j

Hpjirj º 0 (31)

Consequently, any error in this parameter will be undetect‐
able. When a model parameter does not appear in any of the
measurement functions, it means that it is associated with an
“irrelevant branch” [15] (except the parameters of a shunt
device). A branch is called an irrelevant branch if its model
does not appear in any measurement equations. The place‐
ment or removal of an irrelevant branch will not change the
observability and SE formulation/solution of a network. An
example of an irrelevant branch is given in Fig. 2. In this ex‐
ample, the system is observable with the measurements of re‐
al and reactive power injections at bus 1, real and reactive
power flows along branch 1-2 and branch 1-3, and voltage
magnitude at bus 1. Branch 2-3 is an irrelevant branch since
it is not incident to any measurements. The removal of
branch 2-3 does not change the observability of the system.
Moreover, with a given set of values of the measurements,
the removal of branch 2-3 does not change the state estimate
as well.

If a parameter is associated with an irrelevant branch, it is
not of concern from the perspective of SE, since it does not
have any impact on SE. However, it is still of concern in
this paper, because other applications in power system opera‐
tion may be impacted by this type of parameters. The elec‐
tricity market is certainly one of them, since the ED solution
is determined by the parameters of all branches, and parame‐
ters of irrelevant branches are apparently part of the vulnera‐

bility of the model database due to the fact that there is no
capability of detecting and estimating their errors. In view of
this, they are still broadly considered as one category of criti‐
cal parameters in this paper, despite the fact that they are
not exactly analogous to the concept of critical measurement.

Definition 2: for a critical parameter pi, if Γ i =∅, this pa‐
rameter is referred to as a SE-irrelevant critical parameter.

Remark 2: SE-irrelevant critical parameters can be elimi‐
nated by turning the corresponding irrelevant branch into a
relevant one. If the system is observable, it can be done by
placing a pair of real and reactive injection measurements at
one of the terminal buses, or placing a pair of real and reac‐
tive flow measurements along this branch.

Clearly, either injection measurements at terminal buses or
flow measurements along the branch contain the parameters
of this branch in their measurement equations, so the set of
associated measurements will no longer be empty for these
parameters. Furthermore, given that the system is originally
observable, the added measurements will not be critical, i.e.,
their removal will not lead to loss of observability of the sys‐
tem. Therefore, after they are added, the parameters of con‐
cern will not become SE-relevant critical parameters (see
Definition 1). Consequently, they will become non-critical.

The analysis in Section IV and this section can be readily
combined to form a systematic meter placement strategy for
removing the security risks in electricity market operation
imposed by critical model parameters. First, the critical pa‐
rameters are identified, and their impacts on the LMPs can
be obtained and ranked as described in Section IV. Then, if
the budget is limited, meter placement is considered to re‐
move critical parameters with impacts from high to low.
They are classified as either SE-relevant or irrelevant, then
additional meters can be placed as described in this section.

VI. SIMULATION RESULTS

In this section, simulation cases on the IEEE 57-bus sys‐
tem will be presented. The objectives of this section are
three-fold:

1) Verifying the concept that critical parameter errors may
have a significant impact on the energy prices in electricity
markets, thus becoming a potential security vulnerability for
system operation.

2) Illustrating how the proposed security assessment can
be implemented to evaluate the security risks imposed by
each critical parameter, and prioritizing them for the invest‐
ment of countermeasures.

3) Verifying that the proposed meter placement strategy is
effective for transforming a critical parameter into a non-crit‐
ical one, thus eliminating the security risk identified in this
paper.

It should be noted that numerical results may vary with re‐
spect to the chosen test system or network topology, but it
does not affect the verification and illustration of the pro‐
posed concept and method, or the general conclusions
reached from the demonstrated results.

All simulations for SE and ED are performed in MAT‐
LAB 2018b. Dispatchable generators are assumed at buses
1, 2, 3, 6, 8, 9, 12, 23, and 37. In order to consider the ef‐

V
V

Flow measurement
Injection measurement
Voltage measurement

1

2

3

Fig. 2. An example of irrelevant branch (branch 2-3).
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fect of congestion patterns, branch flow limits are set such
that the following 6 branches are congested in the correct
network model: 4-3, 2-1, 3-15, 45-44, 15-1, and 38-37.
There exist 41 pairs of power injection measurements, 61
pairs of power flow measurements, and 9 voltage measure‐
ments, yielding a measurement redundancy of 1.88. Apply‐
ing the analysis of Sections IV and V, the critical parameters
(reactance only) and their types are identified as shown in
Table I. There are 13 critical parameters in the system,
among which 9 are SE-relevant and 4 are SE-irrelevant.

The impact of their errors on the LMPs can be found by
following the steps given in Section IV. As an illustrative ex‐
ample, the results associated with the critical parameter (re‐
actance) of branch 45-44, are shown in Figs. 3 and 4. It is
assumed that errors of -80% through 100% of the original
values cannot be detected using the rule of thumb, and in
this interval, the LMP deviations from their original values
with respect to the parameter error are plotted in Fig. 3. The
thin solid curves in different colors show the LMP devia‐
tions of different buses, and the dashed curves in red show
their envelopes.

Obviously, the LMPs at different buses have different re‐
sponses to the parameter error. When the error is zero, the
deviations of LMPs are all zero; as the error grows in the
positive direction, deviations of LMPs first keep close to ze‐
ro, then have a jump at 17% of the error. This is due to the
change of the congestion pattern: the parameter error re‐
moves congestion on originally congested branch 45-44. In
response to the change of the congestion pattern, some buses
experience positive or negative LMP changes, and others
stay almost unchanged. Beyond this point, LMPs change
slightly as the error grows, but the changes are quite modest.
No further jumps are observed which implies that the con‐
gestion pattern stays unchanged. LMP deviations are more
complicated in the negative direction, but can be explained
in a similar way. It is found that LMPs deviate most severe‐
ly in the range of -30% to -37% parameter error. When the
magnitude of the parameter error gets larger, another conges‐

tion pattern change occurs, which interestingly reduces the
deviations of LMPs. It is evident from this example that the
deviations of LMPs do not always grow proportional to the
magnitude of the parameter error.

The largest difference between the deviations of LMPs of
different buses is plotted against the magnitude of the param‐
eter error in Fig. 4. It is the difference between the upper en‐
velope and lower envelope of all the curves in Fig. 3. It im‐
plies the worst case: the largest bias of the revenue of con‐
ducting a bilateral transaction, or holding a point-to-point fi‐
nancial transmission right. This curve peaks at (-37%,
$78.25). If the parameter error is injected by a cyber adver‐
sary, this point will actually correspond to the optimal strate‐
gy that the adversary may take: by injecting an error of
-37% to this model parameter, and conducting a bilateral
transaction from bus 36 (corresponding to the upper enve‐
lope in Fig. 3) to bus 45 (corresponding to the lower enve‐
lope in Fig. 3), or holding a financial transmission right
from bus 45 to bus 36, the adversary will earn the largest il‐
legal revenue per unit power, which is $78.25 per unit power.

A similar study can be repeated for each critical parame‐
ter, and their impacts on the electricity market can be ranked
accordingly, as shown in Table I. It is seen that some critical
parameters can lead to drastic distortion of LMPs, such as
the reactance of branch 34-32, 48-49, 45-44, and so forth. It
is also observed that some critical parameters have insignifi‐
cant impact on the market. For example, the largest differ‐
ence of the deviations of LMPs that can be incurred from an
error of the reactance of branch 25-30 is $0.13, a negligible
amount. This analysis provides useful information for priori‐
tization of critical parameters for mitigation measures such
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Fig. 3. LMP deviations of buses with respect to parameter error in x45-44.
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Fig. 4. Largest difference between LMP deviations of buses with respect
to parameter error is x45-44.

TABLE I
CRITICAL PARAMETERS, THEIR TYPES AND IMPACTS ON LMPS

Critical
parameter

x34-32

x48-49

x45-44

x15-45

x31-32

x49-50

x48-38

x44-38

x13-9

x47-48

x30-31

x25-30

x33-32

Type

SE-relevant

SE-irrelevant

SE-relevant

SE-irrelevant

SE-relevant

SE-irrelevant

SE-relevant

SE-relevant

SE-irrelevant

SE-relevant

SE-relevant

SE-relevant

SE-relevant

Largest difference between
LMP deviations ($)

91.07

85.12

78.25

71.57

69.75

30.86

30.36

19.53

6.84

0.81

0.32

0.13

0.00

Ranking

1

2

3

4

5

6

7

8

9

10

11

12

13
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as meter placement.
Again, the reactance of branch 45-44 is used as an exam‐

ple to show the removal of criticality by placing additional
measurements. Note that the real and reactive power flow
measurements on branch 45-44 are the only measurements
that are functions of this parameter and that are critical mea‐
surements. Therefore, this parameter is a SE-relevant critical
parameter. By adding a pair of real and reactive power injec‐
tion measurements at bus 45, the criticality of the power
flow measurements on branch 45-44 is eliminated, i.e., they
become redundant measurements. In this case, the reactance
of branch 45-44 will become non-critical as well.

Monte Carlo simulations are conducted to demonstrate the
detectability of errors in the reactance of branch 45-44 be‐
fore and after power injection measurements are added at
bus 45. The measurements are synthesized from power flow
solution, and random Gaussian noise is intentionally added
across the entire measurement set. The chi-square test and
the LNLM test are carried out 100 times, and the frequency
of successful error detection is evaluated for each test. The
results before and after meter placement are shown in Fig. 5.

It is clear from Fig. 5 that before the injection measure‐
ments at bus 45 are placed, both the chi-square test and the
LNLM test are unable to detect any error in the reactance of
branch 45-44 when the error ranges from -80% to 100%.
The frequency of successful error detection almost always
stays at zero, with the occasional nonzero values resulting
from false alarms created by measurement noise, not actual
detection of the parameter error. This result verifies again
that no matter how substantial the error of a critical parame‐
ter is, it is impossible to detect it. In contrast, it can be
found that, after the placement of the injection measure‐
ments at bus 45, the error in this parameter becomes detect‐
able, namely, it is no longer a critical parameter. In both the
positive and negative directions, the frequency of successful
detection for both tests grows with respect to the magnitude
of the error, and reaches 100% (i.e., guaranteed detection) af‐
ter a certain point. It is also seen that the LNLM test has a

higher sensitivity than the chi-square test: when the magni‐
tude of the error goes beyond -12% or 13% of the true val‐
ue, the frequency of detection is 100%, while for the chi-
square test, the detection cannot be guaranteed until the mag‐
nitude of the error goes beyond -20% or 22%.

In order to study the sensitivity of the LMP deviations to
the loading condition, more simulations are conducted for
the example of the reactance of branch 45-44. The load at
one of the terminal buses of this branch, i. e., bus 44, is
scaled to 80%, 100%, 120%, and 140% of the base-case
load, and the procedure for evaluating the largest difference
between LMP deviations with respect to the error in the reac‐
tance of branch 45-44 is repeated. The results under differ‐
ent loading conditions are comparatively shown in Fig. 6.
The curves of 80%, 100%, and 120% loading conditions are
quite similar. As the load increases, the peak of the curve
moves to the right (from negative towards zero), indicating
that the LMP deviations become more sensitive to the param‐
eter error. At the same time, the peak of the curve also gets
thinner, indicating that the large deviations occur within a
narrower range. When the load increases to 140% of the
base-case load, the shape of the curve significantly changes
compared to the lighter loading condition, indicating that the
congestion patterns experienced within the whole range of
parameter error have changed. This study shows that in or‐
der to perform a comprehensive assessment on the impact of
a critical parameter on electricity market operation, loading
conditions for all intervals during the day should be consid‐
ered. The procedure for incorporating multiple loading sce‐
narios in the security assessment of critical parameters has
been described in Section V.

Finally, it should be emphasized again that both critical
and non-critical parameters may have significant impacts on
the evaluation of LMPs, and the discussion of this paper is
focused on the critical parameters only because the errors
cannot be effectively detected without implementing addi‐
tional measures, thus imposing a security threat to system
operation. The example discussed above can be used again
to help clarify this point. In the original measurement config‐
uration, due to the lack of local measurement redundancy,

-80 -60 -40 -20 0 20 40 60 80 100
Parameter error (%)

20

40

60

80

Fr
eq

ue
nc

y 
of

 su
cc

es
sf

ul
 d

et
ec

tio
n 

(%
)

LNLM test after meter placement
Chi-square test after meter placement
LNLM test before meter placement

Chi-square test before meter placement

0

30

50

70

90

10

-10

100
110

Fig. 5. Frequency of successful error detection before and after meter
placement.

-70 -60 -50 -40 -30 -20 -10 0
Parameter error (%)

0

10

20

30

40

50

60

70

80

La
rg

es
t d

iff
er

en
ce

 b
et

w
ee

n
LM

P 
de

vi
at

io
ns

 ($
)

80% load at bus 44; 100% load at bus 44
120% load at bus 44; 140% load at bus 44

Fig. 6. Impact of loading condition on the largest difference between LMP
deviations.

707



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 4, July 2020

the reactance of branch 45-44 is a critical measurement. It
has a significant impact on the energy prices (as shown in
Fig. 3), and its error cannot be detected (as shown by thin
solid curves in Fig. 5). After the placement of power injec‐
tion measurements at bus 45, this parameter becomes non-
critical. Its error becomes detectable (as shown by thick
dashed curves in Fig. 5), nevertheless, its presence has the
same impact on the energy prices (as shown in Fig. 3). It is
not considered as a security vulnerability only because the
error can now be easily detected and corrected.

VII. CONCLUSION

This paper presents the formal linkage between the critical
model parameter issue and the security of electricity market
operation. It is shown that undetectable errors in critical pa‐
rameters can significantly bias LMPs, regardless of whether
they come from inadvertent mistakes or malicious attacks. A
numerical method is developed to obtain the complicated
and discontinuous relation between them, and identify the
critical parameters which may severely influence electricity
market operation. Subsequently, the properties of critical pa‐
rameters are further studied, and meter placement strategies
are discussed for different types of situations. Finally, case
studies are performed in the IEEE 57-bus test system, verify‐
ing and illustrating the proposed analysis and design meth‐
ods.
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