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Abstract——Cyber-attacks that tamper with measurement infor‐
mation threaten the security of state estimation for the current
distribution system. This paper proposes a cyber-attack detec‐
tion strategy based on distribution system state estimation
(DSSE). The uncertainty of the distribution network is repre‐
sented by the interval of each state variable. A three-phase in‐
terval DSSE model is proposed to construct the interval of each
state variable. An improved iterative algorithm (IIA) is devel‐
oped to solve the interval DSSE model and to obtain the lower
and upper bounds of the interval. A cyber-attack is detected
when the value of the state variable estimated by the traditional
DSSE is out of the corresponding interval determined by the in‐
terval DSSE. To validate the proposed cyber-attack detection
strategy, the basic principle of the cyber-attack is studied, and
its general model is formulated. The proposed cyber-attack
model and detection strategy are conducted on the IEEE 33-bus
and 123-bus systems. Comparative experiments of the proposed
IIA, Monte Carlo simulation algorithm, and interval Gauss
elimination algorithm prove the validation of the proposed
method.

Index Terms——Cyber-attack detection, distribution network,
interval state estimation, distribution system state estimation,
cyber-attack model.

I. INTRODUCTION

SMART grid technology is widely developing by combin‐
ing traditional power systems with measurement and in‐

formation technology. With the bidirectional flow and effi‐
cient utilization of data and information in power systems,
severe security incidents caused by cyber-attack occur fre‐
quently. In 2015, many regional power grids in Ukraine suf‐
fered large-scale blackouts due to cyber-attacks [1]. In 2016,
Israel Electric Power Company forced a large number of
computers running offline due to a cyber-attack [2]. In 2019,

Venezuela’s power system suffered a series of cyber-attacks,
and more than two-thirds of its territory suffered blackouts.
All these incidents indicate that cyber-attacks threaten the se‐
curity of power system operation.

Based on an analysis of the current cyber-attacks on pow‐
er systems, cyber-attacks can be divided into three types:
physical, communication, and information attacks. Physical
attacks use viruses to attack physical devices, such as com‐
puters and measurement devices. Communication attacks
take the communication protocols as the attack objective. In‐
formation attacks tamper with control system commands via
false data-injection attacks (FDIAs).

Based on the characteristics of different cyber-attack
types, the corresponding cyber-attack defense strategies are
proposed: ① physical security: applying appropriate protec‐
tion for measurement devices or replacing them with more
accurate phase measurement units [3]; ② communication se‐
curity: using various cryptography technologies to prevent
cyber-attacks [4]; ③ information security: utilizing state esti‐
mation to track the actual power system under various mali‐
cious cyber-attacks [5], [6]. This paper focuses on the infor‐
mation cyber-attack defense strategy based on state estima‐
tion.

Under an information attack, bad data are injected into the
supervisory control and data-acquisition (SCADA) system,
which affects the regular operation of the power system. The
traditional bad data detection and identification (BDDI) algo‐
rithm can effectively detect simple FIDAs. If the attacker ob‐
tains the power system topology, an FIDA based on the state
estimation can elude the BDDI and increase the successful
attack rate [6]- [10]. In [8], a cyber-attack was implemented
to falsify the voltage measurement in the distribution system
connected with photovoltaic systems. In [9], an FIDA model
with incomplete information of the system network was pro‐
posed. In [7]-[9], an FIDA model against state estimation of
a linear power system was proposed. Considering the nonlin‐
earity of the distribution network, the nonlinear state estima‐
tion equations were relaxed and a single-phase FIDA model
assuming a small variation in the voltage phase angle was es‐
tablished [10]. However, the typical characteristic of the dis‐
tribution network is the three-phase unbalancing and cou‐
pling caused by the asymmetrical loads and line parameters.
To improve the successful attack rate, the nonlinearity and
three-phase unbalancing of distribution network limits
should be considered in FIDA modeling.
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The current research on FIDA-based detection strategies is
divided into state-estimation-based, trace-prediction-based,
and artificial-intelligence-based strategies. ① The state-esti‐
mation-based detection strategy improves the traditional state
estimation algorithm to identify false data, including residual
detection [11], mutation detection [12], and correlation detec‐
tion [13]. ② The trace-prediction-based detection strategy
[14], [15] detects false data by comparing the predicted and
actual measurements. In [15], a statistics-based measurement
consistency test method to determine the consistency be‐
tween the predicted and actual measurements was proposed.
③ The artificial-intelligence-based detection strategy utilizes
artificial intelligence algorithms such as deep learning [16]
and clustering algorithms [17] to detect false data directly.
However, the trace-prediction-based and artificial-intelli‐
gence-based strategies require large historical data and high
computation costs, which are not suitable for complex distri‐
bution networks.

As the distribution network shows stochastic uncertainty,
the cyber-attack detection performance is affected based on
the traditional state estimation algorithm. To deal with the
uncertainty of the distribution network, the current derivative
of the main uncertain distribution system state estimation
(DSSE) algorithm includes Monte Carlo (MC) simulation
[18], stochastic state estimation [19], [20], fuzzy state estima‐
tion [21], [22], and interval estimation [23]. The MC simula‐
tion and stochastic state estimation use distributions to de‐
scribe the uncertainty. The fuzzy state estimation method uti‐
lizes fuzzy numbers to represent the uncertainty, and the in‐
terval estimation uses the interval to qualify the uncertainty.
The MC simulation obtains the probability distribution of un‐
certain variables through a large number of repeated random
sampling experiments [18]. In [20], a probabilistic model
was used to deal with random information. In [22], a distri‐
bution network state estimation model with fuzzy numbers
was established, which handled uncertain information with
fuzzy membership functions. In [23], the upper and lower
bounds were used to represent the uncertain information to
calculate the possible range of system state.

However, except for interval estimation, the other three un‐
certain DSSE algorithms require the assumption of the distri‐
bution or fuzzy function. Thus, the interval estimation is uti‐
lized in this paper for combination with DSSE. Compared
with traditional state estimation, the calculation of the uncer‐
tain state estimation based on interval DSSE is usually com‐
plex, which affects its convergence and rapidity. It is impor‐
tant to accurately formulate a reasonable interval DSSE
mathematical model and propose a fast solving algorithm.
Therefore, a cyber-attack detection strategy based on the in‐
terval DSSE method is proposed to deal with the above-men‐
tioned challenges. The main contributions of this paper can
be summarized as follows:

1) Aiming at the three-phase unbalancing and uncertainty
problems in the distribution network, a three-phase interval
state estimation model based on equivalent current measure‐
ments is proposed.

2) An improved iterative algorithm (IIA) based on the
Krawczyk operator is proposed to solve the interval, DSSE

model effectively and to obtain the interval of each state
variable.

3) A general FDIA model is formulated based on the three-
phase DSSE model.

4) A cyber-attack detection strategy based on interval
DSSE is proposed and applied to realize real-time monitor‐
ing and warning of cyber-attacks in the distribution network.

The remainder of the paper is organized as follows. Sec‐
tion II introduces the interval DSSE model and the corre‐
sponding solution algorithm. Section III introduces the gener‐
al cyber-attack model. Section IV shows the details of cyber-
attack strategy based on interval DSSE. Section V presents
the numerical experiments tested on the IEEE 33-bus and
123-bus systems. Section VI draws the conclusions and pro‐
vides the direction for future work.

II. INTERVAL DSSE MODEL

In this section, the traditional three-phase linear DSSE
model is firstly introduced. Then, the proposed interval
DSSE model combining the interval estimation with three-
phase linear DSSE is displayed. Finally, the interval DSSE
model solved by the IIA is presented.

A. Traditional Three-phase Linear DSSE Model

Currently, the three-phase measurement data of distribu‐
tion network mainly include [24]: ① the current complex
phasor Iijmea of branch i-j; ② the power complex phasor
Sijmea of branch i-j; ③ the injected power complex phasor
Simea of bus i; ④ the voltage complex phasor Vimea ; ⑤ the
voltage amplitude |Vimea| of bus i.

|Vimea| can be converted to the equivalent voltage complex
phasor Viequ according to the phase-angle measurement of
the adjacent bus. Sijmea and Simea can be converted to the
equivalent current complex phasors Iijequ and Iiequ according
to (1) and (2), respectively.

Iijequ = ( Sijmea

Vimea
)

*

(1)

Iiequ = ( Simea

Vimea
)

*

(2)

The measurement equations of Iijmea , Iijequ , and Iiequ are ex‐
pressed as (3) and (4) in [25], [26].
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where Iij = Iijre + jIijim is the three-phase current complex pha‐
sor of branch i-j; Ii = Iire + jIiim is the three-phase current
complex phasor of bus i; Vi = Vire + jViim is the three-phase
voltage complex phasor of branch i-j; Yij and Yi are the matri‐
ces of the branch mutual admittance and bus self-admittance,
respectively, which are the constant measurement function
matrices; and [Vi1Vi2ViN]T is the voltage drop of N
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branches connected to bus i.
The three-phase measurements of V imea and V iequ are ex‐

pressed as (5), where U is the identity matrix.
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Thus, the three-phase linear DSSE model is expressed as
(6), where x is the vector set of state variables which repre‐
sents the complex bus voltage. The three-phase linear DSSE
can be further simplified as (7).
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z =Hx + v (7)

where z and H are the measurement vector and the measure‐
ment coefficient matrix, respectively; and v is the vector of
measurement error set, which follows normal distribution.

B. Three-phase Interval DSSE Model

In the interval model, the uncertainty of parameters and
measurements is described as the upper and lower limits
[27], as shown in (8).

[x]=[-x x̄]={xÎR|-x£ x£ x̄} (8)

where -x and x̄ are the lower and upper bounds of interval
[x], respectively.

Considering the uncertainty of the parameters and mea‐
surement data of distribution network, all variables are ex‐
pressed in the interval form. Each part of the linear DSSE
model is transformed into the interval form expressed by
(9)-(11).
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where [x], [z], and [H] are the state vector, measurement
vector, and measurement coefficient matrix in interval form,
respectively; and Hn,m is each element of the measurement
coefficient matrix [H].

Equation (9) is the expression of the measurement vector
in the interval DSSE model, including the node voltage and
branch current. Equation (10) is the expression of the mea‐
surement coefficient matrix related to network parameters.
Equation (11) represents the real and imaginary parts of the
node voltage, which are taken as the state variables in the in‐
terval model.

The whole interval DSSE model can be defined as:

[H][x]=[z] (12)

Since the dimension of the measurements is larger than
that of the system state variables, the proposed model (12) is
the problem of an interval over-determined equation. It is dif‐
ficult to establish a unified analytical expression and stan‐
dard analysis method. To solve model (12), the over-deter‐
mined equation is converted into a linear one as:
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Equation (13) is further simplified to (14) which is a lin‐
ear equation with an interval element:

[A][x]=[b] (14)

where [A] is a square matrix of size (N + 2M - 1)×(N + 2M -
1); and [x] and [b] are both vectors with (N + 2M - 1) dimen‐
sions.

C. Improved Interval Iterative Algorithm

The width of the interval obtained through the interval
DSSE directly affects the detection of cyber-attacks. If the
interval is too narrow, a false alarm may occur due to the un‐
certainty of the distribution network. Otherwise, the cyber-at‐
tack may not be detected. To achieve a suitable interval
quickly, an improved interval iterative algorithm based on
the Krawczyk operator is proposed in this paper. Based on
(14), the detailed process of solving the interval DSSE can
be summarized as follows:

1) Select any A∈[A] and b∈[b], where A-1b∈[x] according
to (14).

2) A specific C ∈R(N + 2M - 1)×(N + 2M - 1) can be found in (15)
and (16), which is the inverse of the midpoint matrix of [A],
so that A-1b can be further expanded into (17).

C = (Mid([A]))-1 (15)
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Mid([aN + 2M - 11]) Mid([aN + 2M - 12])  Mid([aN + 2M - 1N + 2M - 1])

(16)

Α-1b=Cb- (CΑ- I)Α-1b (17)

where Mid(·) is the median function of interval numbers; and
I is an (N + 2M - 1)×(N + 2M - 1) unit matrix.

3) When (17) satisfies A-1b = Cb- (CA- I)A-1b∈C[b]-
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(C[A]- I)[x], the Krawczyk operator Koperator can be used to
obtain the approximate solution set as (18).

{Koperator =C[b]- (C[A]- I)[xk]

[xk + 1]=Koperator [xk]
(18)

where [xk] is the solution of the kth iteration.
Substituting (13) into (18), the iterative equation (18) can

be expressed as:

[xk + 1]= ( )C
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[z]

0
- ( )C
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ù
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[H] -1

0 [H]TW -1 - I [xk] [xk] (19)

According to [28], Koperator at the kth iteration is a set con‐
taining all feasible solutions, and the interval width is al‐
ways less than that of [xk - 1 ]. Therefore, with the iteration of
(19), the interval width of the solution set [x] decreases and
gradually approaches the solution set.

4) When the amplitude of the infinite norm of the interval
solution vector [xk] decreases to the convergence criterion,
the iteration is stopped when (20) is satisfied.

∑
i = 1

n

||Wid([xk])||-∑
i = 1

n

||Wid([xk + 1])||< ε (20)

where ||Wid([xk])|| is the interval width of [xk]; and ε is a giv‐
en small positive number which is usually taken as 10-6.

III. GENERAL CYBER-ATTACK MODEL

In this section, the basic principle of FDIA is introduced.
Then, the general FDIA model is formulated based on the
three-phase linear DSSE model.

A. Basic Principle of False Data-injection Attack

For a given network connection, branch parameters, and
measurement data, denote zmea as the vector of all the mea‐
surements. The relationship between zmea and x is expressed
by a vector of nonlinear measurement functions h(x) in (21),
which is called a nonlinear DSSE model.

zmea = h(x)+ v (21)

To inject false data into the system, it is reasonable to
make the following assumptions:

1) The attacker knows the complete system information.
2) Any form of nonlinear DSSE model can be trans‐

formed into the linear DSSE model proposed in Section II.
3) All the original measurement data zmea can be trans‐

formed into the equivalent measurement data zequ in the lin‐
ear DSSE model by the attacker.

In the linear three-phase DSSE model, a closed-form solu‐
tion of model (7) is derived in (22).

x̂ = (H T R-1 H)-1 H T R-1 zmea (22)

where x̂ is the state computed by traditional linear DSSE;
and R is the variance matrix of measurement error with the
size of N × N. Based on the equivalent data, model (7) can
be expressed as:

zequ =Hx̂ + v (23)

By introducing a false data-injection attack vector a, the
linear three-phase DSSE model after the cyber-attack can be

expressed as:

zequ + a=Hx̂a + v (24)

where x̂a is the estimated state by the linear DSSE model af‐
ter the cyber-attack.

It is noteworthy that the measurement coefficient matrix
H in the linear DSSE model is different from the measure‐
ment function h(·) in the original nonlinear DSSE. Therefore,
after the false data-injection attack, the relationship between
measurements and estimated states is unequal, expressed
by (25).

zmea + a¹ h(x̂a)+ v (25)

To guarantee the solution x̂a is the same as the solution of
the original nonlinear DSSE model, it is necessary to find a
constant vector Δz to satisfy (26), and the original measure‐
ment data are tampered with zmea +Dz.

zmea +Dz = h(x̂a)+ v (26)

Currently, bad data detection is generally based on the
maximum normalized residual (MNR). Thus, if a can suc‐
cessfully pass through the detection of the MNR, Dz is the
general form of the vector of FDIA of the original distribu‐
tion network. In this way, the cyber-attack can be implied to
different distribution network state estimation algorithms.

B. General FDIA Model Based on Linear DSSE Model

In linear DSSE model, the residual in (24) is given as
(27) after a is injected.

va = za -Hx̂a = zequ + a-H(x̂ + (H ΤR-1 H)-1 H ΤR-1a) =
zequ -Hx̂ + a-H(H ΤR-1 H)-1 H ΤR-1a (27)

Let a=Hd, where d is any arbitrary constant vector. The
residual can be rewritten as:

va = zequ -Hx̂ +Hd -H(H ΤR-1 H)-1 (H ΤR-1 H)d =
zequ -Hx̂ +Hd -Hd = zequ -Hx̂ = v (28)

It can be seen that the residual after the cyber-attack is
the same as that before the attack. Therefore, if the residual
v before the attack can pass the MNR test, the residual va af‐
ter the attack can also successfully pass the MNR test.

IV. CYBER-ATTACK DETECTION STRATEGY BASED ON

INTERVAL DSSE MODEL

A. Cyber-attack Vector in Linear Three-phase DSSE Model

In the linear three-phase DSSE model (6), the increments
of the original voltage measurement Vimea and the current
measurement Iijmea after the cyber-attack are DVimea and
DIijmea , respectively, as expressed by (29) and (30).

DVimea = aViequ (29)

DIijmea = aIijequ (30)

where aVimea
and aIijmea

are the false data injected in the equiva‐

lent voltage and current measurements, respectively.
The increments of the original power measurements Sijmea

and Simea under the cyber-attack are DP and DQ satisfying:

(P + jQ+DP + jDQ
Vare + jVaim

)
*

= (Iequre + jIequim)+ (aIequre
+ jaIequim

)Þ

[(P +DP)Vare + (Q+DQ)Vaim]+ j[(P +DP)Vaim - (Q+DQ)Vare]

V 2
are +V 2

aim

=

(Iequre + aIequre
)+ j(Iequim + aIequim

)

(31)

where Va,re and Va, im are the real and imaginary parts of the
bus voltage state after the attack, respectively; Iequ,re and
Iequ, im are the real and imaginary parts of the equivalent cur‐
rent measurement before the attack, respectively; and aIequre

and aIequim
are the real and imaginary parts of the false data

injected in the equivalent current measurement, respectively.
Considering that the amplitude of bus voltage in the distri‐

bution network is close to 1 p. u., the real and imaginary
parts of (31) can be simplified as:

(P +DP)Vare + (Q+DQ)Vaim » Iequre + aIequre
(32)

(P +DP)Vaim - (Q+DQ)Vare » Iequim + aIequim (33)

The increment of the real and imaginary parts of the bus
voltage state after the cyber-attack are denoted as ∆Vim and
∆Vre, respectively. Thus, Va,re = Vre +∆Vre and Va, im = Vim +∆Vim.
Considering PVre + QVim ≈ Iequ,re and PVim - QVre ≈ Iequ, im, (32)
and (33) are further simplified as:

{PDVre +DPVre +DPDVre +QDVim +DQVim +DQDVim » aIequre

PDVim +DPVim +DPDVim -QDVre -DQVre +DQDVre » aIequim

(34)

By solving (34), ∆P and ∆Q can be obtained as:
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DP =
e(Vre +DVre)+ f (Vim +DVim)

(Vre +DVre)
2 + (Vim +DVim)2

DQ=
e(Vim +DVim)- f (Vre +DVre)

(Vre +DVre)
2 + (Vim +DVim)2

(35)

where e = aIequre
- (PDVre + QDVim); and f = aIequim

- (PDVim +

QDVre).
It is obvious that the attacker can successfully attack the

distribution network only by obtaining the information of Vre,
Vim, P and Q at the corresponding buses.

B. Detection Strategy Based on Interval DSSE

According to the principle that the system state of the dis‐
tribution network cannot change abruptly, the bus state esti‐
mated by DSSE fluctuates up and down slightly. Once the at‐
tacker successfully initiates a cyber-attack by injecting mali‐
cious false measurement data, the estimated value of the esti‐
mated bus state changes greatly. Thus, a cyber-attack detec‐
tion strategy is proposed based on interval DSSE.

Interval DSSE estimates the lower and upper boundaries
of the bus state, which is regarded as the predetermined
threshold. When the bus state calculated by traditional DSSE
does not fall into the interval, an alarm should be issued to
warn the system.

Based on the above analysis, the cyber-attack detection
model is formulated based on the indicator function as (36).
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where x̂m is the mth state estimated by the linear DSSE mod‐
el; [ ]-x x̄ is the corresponding predetermined boundary com‐
puted by interval DSSE; and 1é

ë
ù
û-x mx̄m

is the indictor function,

which equals to 1 when x̂mÎ[-x m
x̄m], otherwise 0.

If γ= 0, the distribution network has never been attacked.
If γ≠ 0, the distribution network has been attacked and the
state obtained by the traditional DSSE algorithm is inaccu‐
rate. In addition, the larger γ is, the more serious the cyber-
attack suffered by the distribution network is.

It is clear that any calculated x̂ beyond the boundaries of
interval DSSE will trigger the cyber-attack alarm. Further‐
more, the value of γ implies the severity of cyber-attack,
which eventually promotes the transformation of the distribu‐
tion network from passive defense to active defense.

Obviously, the advantages of the detection strategy pro‐
posed in this paper are as follows:

1) The proposed detection strategy can be integrated into
the traditional bad-data detection module without additional
redundancy measurements or protection strategies [23],
which is a small investment and is highly economic.

2) The proposed detection strategy makes no assumptions
on the nature of the cyber-attack or the topological structure
of the distribution network. In theory, it is suitable for most
cyber-attack scenarios.

3) Compared with those in previous studies, the proposed
detection strategy requires only a few predetermined parame‐
ters [29]. It can be applied on any time scale to meet the re‐
quirement of real-time cyber-attack detection.

V. CASE STUDIES

The width and computation time of the estimated interval
based on the interval DSSE directly affects the detection per‐
formance. If the estimated interval is too wide, the cyber-at‐
tack may be missed. If the computation time is too long, it
is not suitable for real-time cyber-attack detection. Thus, the
comparison experiments of the interval state estimation algo‐
rithms based on the interval DSSE are firstly conducted.
Then, the detection performance is displayed under single-
and multiple-bus cyber-attacks. To evaluate the performance
of the proposed detection strategy based on interval DSSE,
the test and analysis are carried out on the IEEE 33-bus and
123-bus systems shown in Fig. 1 and Fig. 2, respectively.
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Fig. 1. Topology of IEEE 33-bus system.
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where Va,re and Va, im are the real and imaginary parts of the
bus voltage state after the attack, respectively; Iequ,re and
Iequ, im are the real and imaginary parts of the equivalent cur‐
rent measurement before the attack, respectively; and aIequre

and aIequim
are the real and imaginary parts of the false data

injected in the equivalent current measurement, respectively.
Considering that the amplitude of bus voltage in the distri‐

bution network is close to 1 p. u., the real and imaginary
parts of (31) can be simplified as:

(P +DP)Vare + (Q+DQ)Vaim » Iequre + aIequre
(32)

(P +DP)Vaim - (Q+DQ)Vare » Iequim + aIequim (33)

The increment of the real and imaginary parts of the bus
voltage state after the cyber-attack are denoted as ∆Vim and
∆Vre, respectively. Thus, Va,re = Vre +∆Vre and Va, im = Vim +∆Vim.
Considering PVre + QVim ≈ Iequ,re and PVim - QVre ≈ Iequ, im, (32)
and (33) are further simplified as:
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By solving (34), ∆P and ∆Q can be obtained as:
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where e = aIequre
- (PDVre + QDVim); and f = aIequim

- (PDVim +

QDVre).
It is obvious that the attacker can successfully attack the

distribution network only by obtaining the information of Vre,
Vim, P and Q at the corresponding buses.

B. Detection Strategy Based on Interval DSSE

According to the principle that the system state of the dis‐
tribution network cannot change abruptly, the bus state esti‐
mated by DSSE fluctuates up and down slightly. Once the at‐
tacker successfully initiates a cyber-attack by injecting mali‐
cious false measurement data, the estimated value of the esti‐
mated bus state changes greatly. Thus, a cyber-attack detec‐
tion strategy is proposed based on interval DSSE.

Interval DSSE estimates the lower and upper boundaries
of the bus state, which is regarded as the predetermined
threshold. When the bus state calculated by traditional DSSE
does not fall into the interval, an alarm should be issued to
warn the system.

Based on the above analysis, the cyber-attack detection
model is formulated based on the indicator function as (36).
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where x̂m is the mth state estimated by the linear DSSE mod‐
el; [ ]-x x̄ is the corresponding predetermined boundary com‐
puted by interval DSSE; and 1é
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is the indictor function,

which equals to 1 when x̂mÎ[-x m
x̄m], otherwise 0.

If γ= 0, the distribution network has never been attacked.
If γ≠ 0, the distribution network has been attacked and the
state obtained by the traditional DSSE algorithm is inaccu‐
rate. In addition, the larger γ is, the more serious the cyber-
attack suffered by the distribution network is.

It is clear that any calculated x̂ beyond the boundaries of
interval DSSE will trigger the cyber-attack alarm. Further‐
more, the value of γ implies the severity of cyber-attack,
which eventually promotes the transformation of the distribu‐
tion network from passive defense to active defense.

Obviously, the advantages of the detection strategy pro‐
posed in this paper are as follows:

1) The proposed detection strategy can be integrated into
the traditional bad-data detection module without additional
redundancy measurements or protection strategies [23],
which is a small investment and is highly economic.

2) The proposed detection strategy makes no assumptions
on the nature of the cyber-attack or the topological structure
of the distribution network. In theory, it is suitable for most
cyber-attack scenarios.

3) Compared with those in previous studies, the proposed
detection strategy requires only a few predetermined parame‐
ters [29]. It can be applied on any time scale to meet the re‐
quirement of real-time cyber-attack detection.

V. CASE STUDIES

The width and computation time of the estimated interval
based on the interval DSSE directly affects the detection per‐
formance. If the estimated interval is too wide, the cyber-at‐
tack may be missed. If the computation time is too long, it
is not suitable for real-time cyber-attack detection. Thus, the
comparison experiments of the interval state estimation algo‐
rithms based on the interval DSSE are firstly conducted.
Then, the detection performance is displayed under single-
and multiple-bus cyber-attacks. To evaluate the performance
of the proposed detection strategy based on interval DSSE,
the test and analysis are carried out on the IEEE 33-bus and
123-bus systems shown in Fig. 1 and Fig. 2, respectively.
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Fig. 1. Topology of IEEE 33-bus system.
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A. Performance of Interval State Estimation Algorithm

In this paper, the MC algorithm is employed to evaluate
the precision of the algorithm [18]. The interval obtained by
the MC algorithm based on the interval DSSE model is con‐
sidered as the true maximum boundary of the estimated
states. The results of interval state estimation based on the
proposed IIA are compared with those of deterministic state
estimation, MC algorithm, and interval Gauss elimination
(IGE) algorithm. The IGE algorithm [30], [31] is the conven‐
tional interval analysis algorithm based on the traditional
Gaussian method, and uses the interval numbers to replace
the point value. The coefficient matrix can be formed and
converted to the upper triangular matrix in the interval form.

An indicator is used to evaluate the precision of estima‐
tion results based on the interval DSSE model, which is giv‐
en by:

W =
1
M∑m= 1

M

(x̄m - -x m
) (37)

where W is the average value of the interval width. The
smaller W is, the more accurate the interval algorithm will
be.

Taking the IEEE 33-bus system as an example, the results
of voltage amplitude and phase angle obtained by different
interval state estimation algorithms are presented in Fig. 3
and Fig. 4, respectively.

It is evident that all the states estimated by the determinis‐
tic DSSE are covered by the estimated interval based on the
interval DSSE model. This implies that interval DSSE pro‐
vides a reasonable boundary description of the system state.
Furthermore, the interval estimated by the IIA is much nar‐
rower than the IGE on the voltage amplitude and phase an‐
gle, which benefits the cyber-attack detection. In Fig. 3, the
result of IIA is close to the true maximum boundary of the
estimated states and is thus suitable as the judging condition
of the cyber-attack detection.

To further analyze the precision of the state interval esti‐
mation of IIA, the results of the MC algorithm and IIA with
different measurement uncertainty levels are shown in Table
I, where [-δδ] is the original measurement uncertainty level.

It is apparent that the interval width becomes large with
increasing measurement uncertainty. The result of interval
DSSE is close to the true interval obtained by the MC algo‐
rithm in different scenarios. Comparing the results on IEEE
33-bus and 123-bus systems, the difference between the MC
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TABLE I
RESULT OF MC AND IIA BASED ON INTERVAL DSSE MODEL WITH

DIFFERENT MEASUREMENT UNCERTAINTY LEVELS

System

IEEE 33-
bus system

IEEE 123-
bus system

Method

MC

IIA

MC

IIA

Measurement
uncertainty

[-2δ, +2δ]

[-4δ, +4δ]

[-6δ, +6δ]

[-8δ, +8δ]

[-2δ, +2δ]

[-4δ, +4δ]

[-6δ, +6δ]

[-8δ, +8δ]

[-2δ, +2δ]

[-4δ, +4δ]

[-6δ, +6δ]

[-8δ, +8δ]

[-2δ, +2δ]

[-4δ, +4δ]

[-6δ, +6δ]

[-8δ, +8δ]

W (p.u.)

0.0174

0.0323

0.0552

0.1204

0.0298

0.0516

0.0972

0.1658

0.0298

0.0516

0.0972

0.1658

0.0367

0.0689

0.1063

0.1942

Iteration

4

7

10

13

7

10

12

16

Time
(ms)

237.68

250.56

281.04

321.23

1821.89

2121.88

2591.23

3014.46
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algorithm and IIA with different measurement is similar. It
means that the performance of IIA can remain stable with in‐
creasing complexity of the system. Moreover, the computa‐
tion time of IIA based on the interval DSSE is fast and ac‐
ceptable for real-time detection. Thus, the interval of the sys‐
tem state estimated by IIA based on the interval DSSE mod‐
el is suitable as the predetermined boundary of the cyber-at‐
tack detection.

B. Detection Performance Under Attack on Single Bus State

The bus voltage amplitude of a-phase is taken as an exam‐
ple and an attack is constructed by modifying the state of
the single bus, bus 61, which is selected randomly. Figure 5
presents the voltage amplitude of the a-phase based on tradi‐
tional linear DSSE before and after the cyber-attack.

In Fig. 5, the voltage of bus 61 changes from 0.913 p.u.
to 0.8 p. u. after the false-data attack, which indicates that
the attacker successfully implements a cyber-attack on the
distribution network.

Figure 6 shows the result of the MNR test before and af‐
ter cyber-attack on bus 61 in 100 MC experiments.

In Fig. 6, the result of the MNR test after the attack is ba‐
sically consistent with that before the attack, which is also
lower than the set residual threshold 3. This illustrates that
the proposed cyber-attack model can successfully evade the
traditional residual test without being judged as bad data
while injecting the false data.

The detection result based on the proposed interval DSSE
detection strategy under [-δδ] is displayed in Fig. 7. The cy‐

ber-attack on the single bus can be easily detected. However,
with the increase of distribution network uncertainties, the
width of the state interval estimated by the interval DSSE al‐
so increases. Figure 8 shows the results of the interval
DSSE detection strategy when the uncertainties of the distri‐
bution network are the standard width δ and 2, 4, 6, and 8
times the width δ, respectively [18].

When the uncertainty of the distribution network is [-8δ,
8δ], the detection strategy based on interval DSSE is invalid.
It is implied that the effectiveness of the detection strategy
is affected by the uncertainty of the distribution network.
When the uncertainty is too significant, it is highly likely
that the distribution network itself operates in an abnormal
state. Consequently, it is difficult to judge whether the distri‐
bution network is being attacked based on the interval DSSE
detection strategy.

C. Detection Performance Under Attack on Multiple Bus
States

The detection performance under an FIDA on multiple
buses is conducted and analyzed. The uncoupled buses 32,
78, and 101 (Case I) and coupled buses 68, 69, and 118
(Case II) are selected randomly. The test result of MNR test
before and after cyber-attack on multiple buses in 100 MC
experiments is shown in Fig. 9. It is clear that the MNR af‐
ter the cyber-attack remains the same as that before the at‐
tack, but lower than the threshold 3. Thus, the injected false
data on the multiple buses cannot be detected by the MNR
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test. The validity of the proposed attack model is further ver‐
ified.

The detection result of the proposed detection strategy is
shown in Fig. 10.
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Fig. 10. Detection result of detection strategy based on interval DSSE af‐
ter cyber-attack on multiple buses. (a) Case I. (b) Case II.

All the abnormal bus states can be detected by the pro‐
posed detection strategy. Between the results of Fig. 10(a)

and (b), the voltage amplitude of coupled buses is larger
than that of the uncoupled ones. It is implied that attacking
coupled buses may enhance the attack performance, but also
makes the cyber-attack easier to detect.

Figure 11 displays the result of the interval DSSE detec‐
tion strategy after the cyber-attack when the uncertainty is
the standard set [-δδ] and 2, 4, 6, and 8 times the width δ.
When the attacker attacks multiple buses, all the anomalies
may not be detected under the large system uncertainty. The
detection strategy can warn of a cyber-attack successfully
through some detected abnormal states. However, if the un‐
certainty continues to increase, it may still lead to failure of
the detection strategy.

The attack cost is discussed further. The number of at‐
tacked state variables under the coupled and uncoupled con‐
ditions is set from 2 to 10. The attacked state variables are
selected randomly. The results of the corresponding number
of measurements under the cyber-attack are shown in Fig.
12. It can be seen that the relationship between the numbers
of attacked measurements and state variables is almost lin‐
ear. The number of measurements required under cyber-at‐
tacks on coupled buses is always less than that required un‐
der cyber-attacks on uncoupled buses. In the uncoupled con‐
dition, the linear slope increases with the increasing number
of attacked buses. The difference between the number of at‐
tacked measurements under the coupled and uncoupled con‐
ditions gradually becomes large. It is also implied that it is
more economical for the attacker to attack coupled buses
than uncoupled ones.
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Fig. 9. Result of MNR test before and after cyber-attack on multiple buses
in 100 MC experiments. (a) Case I. (b) Case II.
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VI. CONCLUSION

In this work, a cyber-attack detection strategy based on in‐
terval DSSE is developed against FIDA. The interval of
each system state variable is constructed based on the inter‐
val DSSE to represent the range of its normal value. The cy‐
ber-attack is detected when the value of the state variable es‐
timated by the traditional DSSE is outside of the correspond‐
ing interval determined by the interval DSSE model. An IIA
is developed to solve the interval DSSE model and obtain
the lower and upper bounds of the interval. To validate the
proposed the cyber-attack detection strategy, the basic princi‐
ple of the cyber-attack is studied, and its general model is
formulated based on the three-phase DSSE model. The pro‐
posed cyber-attack model and detection strategy are conduct‐
ed on IEEE 33-bus and 123-bus systems. Comprehensive
comparative experiments of the proposed IIA, MC algo‐
rithm, and IGE algorithm validate the state interval estima‐
tion based on the interval DSSE model and demonstrate the
superiority of IIA.

Based on the numerical results, it is concluded that the
proposed detection strategy is nearly 100% effective in warn‐
ing of the anomalous states caused by the proposed attack
model. The proposed detection strategy is still valid when
the uncertainty of the distribution network increases within
the allowable range. The detection strategy requires not only
a small investment and no assumptions regarding the system
topology or attack type, but also exhibits high detection ac‐
curacy. In addition, the attack on coupled buses is more eco‐
nomical than that on uncoupled ones. However, it also in‐
creases the detection probability.

Our potential future works will focus on two aspects. One
is to develop the optimal algorithms to narrow the estimated
state interval. The other is to exhibit the improved three-
phase DSSE model to enhance the accuracy of the state esti‐
mation.
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