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Abstract——Distribution state estimation (DSE) is an essential
part of an active distribution network with high level of distrib‐
uted energy resources. The challenges of accurate DSE with lim‐
ited measurement data is a well-known problem. In practice,
the operation and usability of DSE depend on not only the esti‐
mation accuracy but also the ability to predict error variance.
This paper investigates the application of error covariance in
DSE by using the augmented complex Kalman filter (ACKF).
The Kalman filter method inherently provides state error cova‐
riance prediction. It can be utilized to accurately infer the error
covariance of other parameters and provide a method to deter‐
mine optimal measurement locations based on the sensitivity of
error covariance to measurement noise covariance. This paper
also proposes a generalized formulation of ACKF to allow sca‐
lar measurements to be incorporated into the complex-valued
estimator. The proposed method is simulated by using modified
IEEE 34-bus and IEEE 123-bus test feeders, and randomly gen‐
erates the load data of complex-valued Wiener process. The
ACKF method is compared with an equivalent formulation us‐
ing the traditional weighted least squares (WLS) method and it‐
erated extended Kalman filter (IEKF) method, which shows im‐
proved accuracy and computation performance.

Index Terms——Augmented complex Kalman filter, direct load
flow, distribution system state estimation, error variance, sensi‐
tivity analysis.

I. INTRODUCTION

DISTRIBUTION state estimation (DSE) is considered an
important part of an operation of a distribution network

with high level of distributed energy resources (DERs). The
increasing penetration of DERs requires a shift towards ac‐
tive distribution networks with smarter and more advanced
monitoring tools to improve network planning and operation.
The purpose of state estimation is to determine the most
probable state of the system based on the measured quanti‐
ties. While the deployment of phasor measurement units

(PMUs) to improve the observability are common in trans‐
mission networks, distribution networks have more signifi‐
cant challenges with state estimation due to the limited real-
time information and the network topology. Radial distribu‐
tion networks can be far-reaching, extending into remote ar‐
eas. Since the measurement equipment and infrastructure are
typically expensive, it is essential to determine the minimal
number of sensors in the optimal locations to satisfy the ob‐
servability.

The classic approach to state estimation is based on the
weighted least squares (WLS) method, which determines the
best estimate of static state using the weighted sum of the
square of error [1]-[4]. In practical applications, this is for‐
mulated as an over-determined system of nonlinear equa‐
tions and solved as WLS problems [5]. In recent years, there
have been developments in the implementation of WLS, par‐
ticularly around the linearization of the measurement func‐
tion and improving the robustness of convergences [6] - [9].
The typical WLS methodology is considered as a static ap‐
proach to power system state estimation, which means that
estimates are extracted from a single snapshot of measure‐
ments. State estimates from previous time steps are not con‐
sidered in the estimate of current state since state transition
is ignored [10]-[12]. This has led to the development of dy‐
namic state estimators. More recently, methods based on the
Kalman filter (KF) framework have been proposed and de‐
veloped. The formulation of WLS and KF methods are simi‐
lar in that process and measurement noise covariances are
used to provide the best guess state estimate. However, KF
is a recursive estimator that is considered as a dynamic ap‐
proach to state estimation, compared with the snapshot ap‐
proach of classical WLS [12].

There are two paradigms in power system dynamic state
estimation, which differ in terms of the studied dynamics
and time scales. One paradigm, typically referred to as fore‐
casting-aided state estimation (FASE) or tracking state esti‐
mators (TSE), considers the progression of quasi-steady
states of the power system, i. e., the slow evolution of the
static state. In another paradigm, full system dynamics are
considered in terms of classic dynamic models such as gener‐
ator rotor angles [10]-[15]. In this paper, the research is fo‐
cused on the former paradigm.

The use of various KF frameworks in quasi-steady state
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estimation has been proposed. An extended KF (EKF) using
a power flow based dynamic model and load forecasts are in‐
vestigated in [16]. This is developed further by using the iter‐
ated KF (IKF) to estimate the full state vector with both real
and reactive measurements [17]. The WLS and EKF meth‐
ods are compared and the importance of the process and
measurement error covariance matrices is demonstrated [18].
The EKF is used to overcome the practical issues of missing
measurements caused by data dropouts [19]. A procedure for
integrating PMU with the IKF is developed and the sensitivi‐
ty analysis as a function of measurement and process covari‐
ance matrices is performed [20]. There have also been vari‐
ous applications of the unscented KF (UKF) in DSE applica‐
tions. UKF is proposed to achieve better accuracy and more
straightforward implementation over the classical EKF [21].
A robust UKF is proposed to handle the unknown statistics
of system process and measurement noise that could bias the
state estimates [22]. In general, KF methods are based on
the nonlinear formulations of the measurement function.
However, the challenges of these formulations have driven
the need to consider linearization methods [15], [23] and de‐
rivative-free methods [24], [25]. The effectiveness of these
methods depends on the nonlinearity of the dynamic system
and whether the derivatives of nonlinear equations can be
calculated [12].

A linear approach to state estimation is considered by inte‐
grating the direct load flow method in the previous work. A
DSE using the augmented complex KF (ACKF) and the di‐
rect load flow method is developed as a new approach to
quasi-steady state estimation. The approach also allows the
network to be divided into sub-layers so that the network
can be processed more efficiently [26]. The typical approach
for DSE is to separate magnitude and phasor angle in the
state vector, whereas complex-valued estimators consider the
state as a vector of complex values. ACKF has been pro‐
posed in other applications such as frequency estimation in
power networks [14].

A gap of complex-valued estimators in the previous work
considers how scalar measurements can be incorporated in
the augmented complex form. Complex-valued measure‐
ments such as PMU are not as commonly available in distri‐
bution networks as scalar measurements such as voltage
magnitude or branch currents. The application of complex-
valued estimators should consider how both complex-values
and scalar measurements can be integrated without bypass‐
ing second-order statistics. In DSE applications, the avail‐
able measurements are expected to be limited. The DSE al‐
gorithm should provide the best guess estimate of the net‐
work state with limited measurement and an accurate esti‐
mate of the error variance. The accuracy is a crucial aspect
that defines the usability of the DSE. However, determining
and validating the accuracy of estimation is not inherent in
many DSE techniques. While there have been significant ad‐
vancements in DSE, the prediction and validation of estima‐
tion error within DSE techniques are not well researched.

This research is an extension of the previous work on
ACKF DSE. This paper demonstrates the use of error covari‐
ance of the state estimate to determine the error covariance

of other linearly related network parameters. Furthermore,
the Ricatti equations can be used to calculate the sensitivity
of the estimation to measurement types and locations. There‐
fore, a method is provided to determine optimal measure‐
ment points that improve overall estimation accuracy. Tradi‐
tionally, this is difficult to determine because different mea‐
surement types provide improvements to different areas of
estimations. For example, the influence of an additional bus
voltage magnitude measurement on power flow estimation
accuracy is not well understood.

The contributions of this paper are as follows:
1) Define a generalized form of the observation model for

ACKF DSE to incorporate scalar or complex-valued mea‐
surements of bus injection current, branch injection current,
or bus voltage.

2) Derive the relationship between the a posteriori error
covariance of the state estimate and other linearly related
variables, to allow the estimation of error across multiple
network parameters.

3) Provide a method for sensitivity analysis of the Riccati
update equation of the state error covariance, to calculate
changes in error covariance due to additional measurement
locations.

Simulations with a modified IEEE 34-bus and IEEE 123-
bus test feeders are used to verify the proposed work. The
network load data is randomly generated to remove any in‐
fluence of covariances in data that could be exploited in the
estimation technique. It is understood that the relationships
in the data are often used as pseudo-measurements to im‐
prove the accuracy of DSE instead of real-time measure‐
ments. This paper does not exclude the use of pseudo-mea‐
surements to improve the estimation. However, the proposed
methodology focuses on a limited set of simulated measure‐
ments to demonstrate the performance in the estimation of
error variance.

The rest of the paper is organized as follows. Section II
discusses the background of the ACKF DSE and its formula‐
tion. Section III proposes the generalized form of the obser‐
vation model. Section IV discusses how error covariance of
the state estimate can be used to ascertain error covariances
of other linearly related parameters, and also presents the for‐
mulation of the sensitivity of error covariance. Section V dis‐
cusses the simulation methodology. Section VI discusses the
simulation and test results. Section VII draws the conclu‐
sions.

II. BACKGROUND

An augmented complex-valued KF is firstly introduced in
[27] as a means to process general complex-valued nonlinear
and nonstationary signals and bivariate signals with strong
correlations. There is strong applicability in three-phase dis‐
tribution networks due to the complex-valued nature of pow‐
er systems, and the nonstationary nature of loads. DSE using
ACKF is firstly proposed in [26]. The estimator solves the
load flow by using a linear approach. This is different from
the previous DSE using IKF or EKF methods which are
based on nonlinear process models [16]-[18], [22].

The advantage of using the ACKF for estimation com‐
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pared with classical state estimation approaches is that
ACKF is a recursive estimator that considers the state as
complex values.

The ACKF method is derived by using the augmented
states and augmented covariance matrix. A general state-
space model is given as:

{xk + 1 =Fk + 1 xk +ωk

yk =Hk xk + νk

(1)

where xk + 1 is the complex state vector at the next time step
k + 1; xk and yk are the complex state and measurement vec‐
tors at the time step k, respectively; Fk + 1 is the transition
vector at the next time step k + 1; Hk is the measurement vec‐
tor at the time step k; and ωk and νk are the independent and
zero-mean complex-valued Gaussian noise processes with co‐
variance matrices Qk and Rk, respectively. From (1), the aug‐
mented state-space model can be written as:

{x a
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k + 1 x a
k +ωa

k

ya
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k x a
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k
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. The superscript 􀆽 represents the

complex conjugate and the superscript a denotes the aug‐
mented complex form to account for complex statistics.

The use of complex statistics is not a new concept within
distribution system analysis [28], [29], and has been incorpo‐
rated in load forecasting models and state estimation.

A. State Model

In typical power system state estimators, the state is a vec‐
tor of voltage phasor angles and magnitudes for all busses in
the network. This estimator considers the state vector as a
complex-valued current injection at each bus:

x̂ = [ i1Ðδ1 i2Ðδ2 ... iNÐδN ]
T

(3)

There are examples of current-based formulations of the
state estimator [30]. However, the real and imaginary compo‐
nents are usually separated in the state vector. The formula‐
tion of a complex-valued state vector is possible using the
augmented complex methodology.

The KF is a recursive estimator, where x̂ i|j is the estimate
of x at time i, given observations at time j £ i. The transition
matrix F considers the changes of state from the time step k
to the next time step k + 1.

The development of various state models for the KF is
presented in [16], [17]. The transition matrix incorporates
the Jacobian of the network to calculate changes in state,
due to the nonlinear relation between voltage and power
flows. The direct load flow approach is based on the linear
relationship between bus voltage, bus injection current, and
network impedance.

The previous work analyzes the measurements of network
load and shows that the change in bus currents between two
successive time steps, i. e., k ® k + 1, could be characterized
as white noise [26]. This assumes that the state of the net‐
work is inherently static, and any changes in bus current in‐

jections are random and indistinguishable to white noise be‐
tween the successive time steps. The analysis of load data al‐
so includes a low-level penetration of solar photovoltaics. F
is replaced by the identity matrix. This is consistent with the
previous research on stochastic load models, which regard to
actual loads like a normal distribution random variable with
a stochastic perturbation of a fixed value and a white noise
process normally distributed with zero mean [31], [32]. One
disadvantage is that the normal load model does not catego‐
rize the switched nature of loads, nor for higher penetrations
of DERs.

B. Measurement and Output Model

The measurement matrix H is formulated from the equa‐
tions of the direct load flow approach. The benefit of this ap‐
proach is that the output variables, voltage and branch cur‐
rent, are a linear function of the bus injection current, based
on the DLF = BCBV ×BIBC, branch-current to bus-voltage
BCBV, and bus-injection to branch-current BIBC matrices
[33]. BIBC provides the relationship between bus current in‐
jection and branch current. BCBV provides the relationship
between branch current and bus voltage. Both these matrices
form the topology of the network in the direct load flow ap‐
proach to allow a linear calculation of the network state.

The voltage at each bus is given by (4). The branch cur‐
rent is given by (5).

v = v1 -DLF × i inj DLF În´ n (4)

ibranch =BIBC × i inj BIBC În´ n (5)

where v1 is the source voltage; i inj is the bus injection cur‐
rent; and n is the number of buses. Based on (4) and (5), the
output matrix y can be written as:

y =
é
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=Hx + v1 (6)

where y is a d ´ 1 vector consisting of actual or pseudo mea‐
surements of bus injection current, branch flow or voltage,
and d is the total number measurement points. Section III
provides an in-depth formulation of H. The methodology al‐
so allows the reconfiguration of the network topology with‐
out resetting state variables if the load identities are main‐
tained. Since the state propagation model is the identity ma‐
trix, the state variables essentially track the load progression
in the system.

C. ACKF DSE

The process for the ACKF DSE in discrete steps is as fol‐
lows, and the variable descriptions for (7)-(12) can be found
in [27].

1) Propagate the state estimate

x̂ a
k|k - 1 = x̂ a

k - 1|k - 1 (7)

2) Propagate and estimate the error covariance

Pk|k - 1 =Pk - 1 +Qa
k - 1 (8)

3) Calculate the Kalman gain

G a
k =Pk|k - 1 H aH

k + 1 ( )H a
k + 1 Pk|k - 1 H aH

k + 1 +Ra
k

-1

(9)

4) Update the state matrix
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x̂ a
k + 1 = x̂ a

k +Gk (ya
k -H a

k x̂ a
k ) (10)

5) Update error covariance

Pk|k = (I -Gk H a
k ) Pk|k - 1 (11)

6) Initialize the algorithm

x̂ a
0 =E (x a

0 ) (12)

H is formulated based on the measurement points and the
corresponding rows of DLF and BIBC. In most cases, H is
not expected to vary at each discrete time step, i. e., H a =
H a

k =H a
k + 1. Similarly, with the state and error covariance ma‐

trices Q and R, R is defined based on the expected error co‐
variance of the measurement points.

The measurement noise is assumed to be a Gaussian distri‐
bution with zero mean and variance σ 2

i . More accurate mea‐
surements, i. e., sensors, have lower variance, whereas less
accurate measurements, i.e., pseudo, have higher variance. In
R, the elements are assumed to be uncorrelated [17], [30],
which means the off-diagonal elements are zero and Rii = σ 2

i

as the variance of the ith measurement. The augmented form

of R becomes Ra = é
ë
ê

ù
û
ú

R 0
0 R* .

III. INTEGRATING MEASUREMENT TYPES IN AUGMENTED

FORM

The use of augmented complex statistics allows the con‐
sideration of complex values, rather than separation of pha‐
sor magnitude and angles. Since the algorithm is based on
the direct load flow approach, measurements are a linear cal‐
culation of network states, which means the angles of the
bus injection current and bus voltage are referenced to the
source bus. This approach means the data from PMU can be
integrated directly into the estimator. For other measurement
types such as voltage magnitude, current magnitude, or
branch power flow, an additional process is needed to incor‐
porate the data. In this section, we consider how both com‐
plex and real-valued measurements can be integrated into
the estimator.

The algorithm uses the augmented complex form of H,
which is comprised of the selected rows of BIBC and DLF.
Regarding the inclusion of bus injection currents, measured
or as pseudo-measurements, only the identity matrix is need‐
ed. H is of size n´m, where m is the total number of mea‐
surement points. The basic formulation of H for complex-
valued measurements is defined in Appendix A.

This paper proposes a generalized form of H to allow a
range of measurement types to be incorporated into the aug‐
mented form. This provides flexibility in the formulation of
H to handle all likely forms of distribution network measure‐
ments, whether the measurements are scalar-valued, i.e., bus
voltage magnitude, or complex-valued, i.e., PMU data.

The augmented complex form inherently allows complex
values to be considered. However, for scalar measurements,
an alternative derivation is needed to ensure that complex
statistics are maintained. A simple approach is proposed,
which adopt Re (z)= ( )z - z* 2 to allow a simple formulation

of H and consider scalar values. We need to consider that

there is a difference between the real component of measure‐
ment z and the absolute component of z, which depends on
the argument φ.

For magnitude measurements, φ is unknown but is estimat‐
ed by the ACKF. A compensation is introduced to correct
the measurement model output:

| zk |=
Re ( )zk

cos φ̂k - 1

(13)

where φ̂k - 1 is the estimated argument of measurement z at
the previous time step.

In practice, the most common form of magnitude measure‐
ments is bus voltage measurements along a distribution feed‐
er. Typically, we would expect a minimal voltage phase an‐
gle shift along a distribution feeder, which means the com‐
pensator factor would be close to 1, i.e., Re (z)» | z |.

A generalized form of H which considers scalar or com‐
plex-valued measurements is derived as:

H a = é
ë
ê

ù
û
ú

H11 H12

H21 H22

(14)

Equations (15) to (22) define the formulation of H.

H11i = {I i ImeasiÎ
I i

2
ImeasiÎ

i = 12ni (15)

H11i = {BIBC i BmeasiÎ
BIBC *

i

2
BmeasiÎ

i = ni + 1ni + 2ni + nb

(16)

H11i = {DLF i VmeasiÎ
DLF *

i

2
VmeasiÎ

i = ni + nb+ 1ni + nb+ 2ni + nb+ nv (17)

H12i = {0 ImeasiÎ
I i

2
ImeasiÎ

i = 12ni (18)

H12i = {0 BmeasiÎ
BIBC *

i

2
BmeasiÎ

i = ni + 1ni + 2ni + nb (19)

H12i = {0 VmeasiÎ
DLF *

i

2
VmeasiÎ

i = ni + nb+ 1ni + nb+ 2ni + nb+ nv (20)

H12 =H *
21 (21)

H22 =H *
11 (22)

where Imeas,i, Bmeas,i, Vmeas,i are the measurement current injec‐
tion of the ith bus, the measurement branch current of the ith

branch, and the measurement voltage of the ith bus, respec‐
tively. The subscript i refers to the ith row of the correspond‐
ing matrix. The algorithm is flexible. And H can be formu‐
lated if limited measurements are available in a distribution
system. Alternatively, for a well-observed system, H can be
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fully ranked. And the full rank is considered when the num‐
ber of measurements or pseudo points is equal to or greater
than the number of buses.

This proposed formulation allows a flexible set of power
system measurements such as bus injection currents, branch
flows, or bus voltage measurements to be integrated into the
ACKF DSE algorithm. Bus injection and branch flow mea‐
surements can be incorporated in the form of complex cur‐
rent, current magnitude, or power flow measurements. Bus
voltage measurements can be incorporated in the form of
complex voltage or voltage magnitude measurements. Pseu‐
do-measurements can also be incorporated with relevant
changes to R.

IV. ERROR COVARIANCE AND OBSERVABILITY

KFs are well-known to provide useful real-time informa‐
tion on the observability of a system. In applications such as
state estimation of the distribution system, it can be challeng‐
ing to analyze and validate the accuracy of estimation. In a
deterministic sense, the observability means that the observa‐
tion of the output over time provides sufficient information
to accurately estimate the state of the system [34]. The esti‐
mation accuracy depends on the user requirements and the
systems in place that act on the estimation. Determining the
observability of the distribution network is not a well re‐
searched area.

In the traditional WLS method, when there are sufficient
measurements, the whole system can be estimated. This is
true when the rank of the measurement matrix is equal to
the number of unknown state variables. However, the rela‐
tionship between numerical observability and topological ob‐
servability is not obvious [30]. With the KF method, the nu‐
merical observability depends on the numerical stability of
the KF, which is a well-known problem managed through
various methods. As long as the KF is numerically stable,
the system is observable and does not rely on the rank of
the measurement matrix.

One of the benefits of the KF is the produced error covari‐
ance, which can be used to provide the information on the
accuracy of estimation, assuming accurate inputs of state and
measurement error covariance. The a posteriori error vari‐
ance matrix, given by Pk|k, is the estimated accuracy of the
state estimate as calculated by (11). This can also be defined

as Pk|k =E é
ë(xk - x̂k) (xk - x̂k)

Tù
û
.

In this application, the state represents the complex injec‐
tion current for each bus node. Based on the direct load flow
approach, injection current is linearly related to the change
in voltage from the source bus. The error covariance of the
state can be used to ascertain the error covariance of the
voltage estimation from the relationship with DLF [33].

{DV =DLF × x
DV̂ =DLF × x̂

(23)

If we consider the error covariance for the change in bus
voltage due to the change in bus injection current:

Pvoltagek|k =E é
ë
ê(DVk -DV̂k) (DVk -DV̂k)

Tù
û
ú (24)

We can substitute (23) into (24) as:

Pvoltagek|k =E é
ë
ê ù

û
ú( )DVk -DV̂k ( )DVk -DV̂k

T

=

E [ ]DLF × ( )x - x̂ ( )x - x̂
T
×DLF T =

DLF ×E [ ]( )x - x̂ ( )x - x̂
T
×DLF T =

DLF ×Pk|k ×DLF T

In augmented complex form, the error covariance for the
bus voltages is given by:

Pvoltagek|k =DLF a ×Pk|k × ( )DLF a T
(25)

where DLF a = é
ë
ê

ù
û
ú

DLF 0
0 DLF * .

Similarly, the branch error covariance can be derived
through the relationship with BIBC:

Pbranchk|k =BIBC a ×Pk|k × ( )BIBC a T
(26)

where BIBC a = é
ë
ê

ù
û
ú

BIBC 0
0 BIBC

.

BIBC is a nonnegative integer matrix, which means that
BIBC * =BIBC. The error variance is simply the diagonal el‐
ements of the error covariance matrix.

At each time step k, the a posteriori error variance in aug‐
mented complex form is given by:

Pk|k =Pk|k - 1 (I -Gk H a
k ) (27)

where Gk is the optimal Kalman gain, calculated by (9).
The Riccati update equation is derived as Pk + 1|k =Qa +

Pk|k - 1 -Pk|k - 1 H aH ( )H a Pk|k - 1 H aH +Ra
-1

H a Pk|k - 1, where Ra is

the measurement error covariance matrix.
For simplicity, it is assumed that the measurement matrix,

state error covariance matrix, and measurement error covari‐
ance matrix do not change per time step. We can calculate
the sensitivity of the error covariance to measurement loca‐
tion as:

¶Pk + 1

¶Ri

=
¶Pk

¶Ri

-Pk H aH
é

ë
êêSH a

¶Pk

¶Ri

- SRi S (H a Pk)ù
û
úú+

¶Pk

¶Ri

H aH S (H a Pk) (28)

where Ri is the scalar corresponding to the measurement er‐
ror variance at location i of the measurement model; and S =

( )Ra +H a Pk H aH
-1

. This equation provides the sensitivity of

state error covariance for the changes to diagonal elements
of Ra. We can ascertain the impact of changes to measure‐
ment nodes on the overall accuracy of the estimation.

This is considered beneficial for large distribution net‐
works, where the optimal locations for measurement nodes
are not apparent or intuitive. Considering (25) and (26), the
error variance of bus voltage and branch current can be cal‐
culated, respectively. Note that the equation assumes the cur‐
rent and previous time steps of P are also dependent on Ri.
Appendix B shows the derivation of the equation. This equa‐
tion can be solved iteratively to calculate the steady-state val‐
ue.
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V. METHODOLOGY

The modified IEEE 34-bus and IEEE 123-bus test feeders
are used to validate the proposed work. The load for each
bus is generated using a complex-valued Wiener process
with a stochastic perturbation term consisting of a normal
distribution with a nonzero mean. The real and imaginary
components are considered as independent Wiener processes.
The purpose of the non-zero mean is to reflect the inherent
different mean loadings on each bus.

A single simulation set and a full simulation set are con‐
sidered in the results. The purpose of the single simulation
set is to show the time-series performance of the ACKF esti‐
mator compared with the actual load flow and the WLS esti‐
mator. For each simulation set, a total of 200 time steps is
generated. The methodology consists of the following steps:

1) Generate complex-valued current injection for each bus
location.

2) Initialize the ACKF state estimator.
3) At each time step, solve the load flow.
4) At each time step, update the ACKF state estimator us‐

ing the available measurement points.
5) Calculate the estimated state of the network.
6) Compare the ACKF state estimator output with the

load flow results to determine the estimation error at each
time step.

The full simulation set repeats the simulation set 100
times for statistical relevance. The purpose of the full simula‐
tion set is to demonstrate the performance over a statistically
relevant sample size for determining the accuracy of estimat‐
ed error variance. The performance is assessed by using two
metrics: mean absolute error (MAE), and the normalized
mean error variance (NMEV). MAE is calculated across all
the simulations for both bus voltage and branch current mag‐
nitude:

MAE =
1
m∑j = 1

m 1
n∑i = 1

n

|| xi - x̂i (29)

where n is the number of time steps per simulation; and xi is
the parameters of interest, which is the bus voltage and
branch current magnitudes. In the results, the voltage magni‐
tude MAE and branch current magnitude MAE are denoted
as VMMAE and BMMAE, respectively.

Over the full simulation set, the actual error variance of
the state estimator is calculated using the NMEV for both
bus voltage and branch current magnitudes:

ì

í

î

ï
ï
ï
ï

MEV =
1
m∑j = 1

m 1
n∑i = 1

n

( )ei - μ j

2

NMEV =
MEV -min ( )MEV

max ( )MEV -min ( )MEV

(30)

where ei is the error at the time step i for bus voltage and
branch current magnitudes; and μ j is the average error for

the simulation set j, i.e., μ j =
1
n∑i = 1

n

ei.

NMEV is compared with the calculated error covariance
of bus voltage and branch current magnitudes from the KF.
The error variances are considered as the diagonal elements
of the error covariance matrix.

VI. TEST RESULTS AND DISCUSSION

A. IEEE 34-bus Test Feeder

A modified version of the IEEE 34-bus test feeder is used
to simulate the performance as shown in Fig. 1. The feeder
consists of the three-phase main section [35] of the feeder.
The consideration of an unbalanced network can be achieved
by using an unbalanced direct load flow approach [33]. The
number of measurement points is deliberately limited to re‐
strict the observability. The available measurements for the
state estimator are bus voltage magnitudes and branch power
flow, as they are the most commonly available measure‐
ments in distribution networks. Based on the network topolo‐
gy of the test feeder, we consider a voltage magnitude and
branch power flow measurement at the start of the feeder
and approximately half-way along the feeder (voltage magni‐
tude measurements at bus 8, and branch power flow mea‐
surements at branches 1 and 9). Bus 800 is the reference
with a value of 1Ð0° p.u..

Based on the formulation in Section III, H is a 3´ 50 ma‐
trix with a rank of 3. Power flow measurements are approxi‐
mated as complex-valued branch current injections using the
voltage of 1Ð0° p.u.. The limited rank H in augmented com‐
plex form is:

H a =
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(31)

where BIBC i and DLF i are the ith rows of the BIBC and
DLF matrices, respectively. The row corresponds to the
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Fig. 1. Modified IEEE 34-bus test feeder.
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branch or bus measurement point. H is formulated using the
three measurements available: two branch power flow and
one voltage magnitude.

B. Single Simulation Set

Figure 2 shows the comparison of the actual results with
the ACKF estimated output for three selected buses. Bus 8
has a voltage magnitude measurement, and buses 15 and 22
are located at the feeder extremities. Figure 3 shows the esti‐
mation error for voltage magnitude and voltage angle at
each of bus.

The results show that the voltage magnitude error worsens
the downstream of the voltage magnitude measurement loca‐
tion. However, the results also show a consistent error in the
voltage angle estimation, which seems independent of the
measurement locations. This is not unreasonable since the
only corrective information for voltage angle is the single
branch power flow measurement at branch 9.

Figure 4 shows the comparison of active and reactive pow‐
er flows for branches 1, 5, 9, and 18. Although branch 9 has
a power flow measurement, there is an error associated due
to the approximation of branch current from power flow
measurements. There is a progressive increase in error be‐
cause of the limited information available.

The ACKF method is also compared with the traditional
WLS and iterated extended KF (IEKF) formulation to dem‐
onstrate the improved performance. For each bus, the com‐
parison for voltage magnitude and voltage angle errors is
shown in Fig. 5.

The three methods are calculated using the same parame‐
ters such as measurement data, error covariances, and con‐
vergence tolerances, to ensure consistent comparisons. Both
WLS and IEKF methods converge to similar steady-state val‐
ues, which is not unexpected since the IEKF method is
based on similar nonlinear measurement models of WLS esti‐
mators. The IEKF method uses a recursive algorithm to pre‐
dict the state based on a linearization using the Jacobian,
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and a corrective step based on the Kalman gain. Like the
WLS method, the IEKF method is an iterative process that
terminates when the output converges to a defined tolerance
threshold.

The ACKF method demonstrates the improved accuracy
over both WLS and IEKF methods. The deficiencies of the
traditional WLS method are well-known, particularly in situa‐
tions with limited measurement data [30]. This is also the
case with KF methods that are built off the same foundation
as WLS methods.

C. Full Simulation Set

The NMEV for bus voltage and branch current magni‐
tudes is shown in Fig. 6 and Fig. 7, respectively. The error
variance is calculated based on the KF error covariance, as
per (25) and (26), and compared with the actual error vari‐
ance from the simulations. The error variance of the KF is
closely correlated with the actual error variance over the full
set of time-series simulations with randomly generated bus
injection current.

In practical terms, this means it would be possible to accu‐
rately infer the estimation error variance for bus voltage and
branch current magnitudes through the ACKF process.

D. Computation Efficiency

The computation time for ACKF, WLS, and IEKF meth‐
ods is shown in Table I. The simulations are conducted on a
PC with an Intel Core i7-4770 3.4 GHz processor and 16
GB of RAM. The ACKF and WLS methods are calculated
by using the same initial conditions and parameters over the
full simulation set. The average computation time is taken
for each simulation set, and the minimum, maximum, and
mean of the full simulation sets are calculated. The results

show that ACKF has a consistently better computation per‐
formance compared with the WLS and IEKF methods. It is
also found that IEKF has a heavier computation compared
with WLS, which is consistent with the previous re‐
search [36].

E. Sensitivity of Error Variance to Measurements

The previous results show that the ACKF process could
accurately estimate the error variance of voltage and branch
current magnitudes. We can determine the optimal locations
for additional measurements by calculating the predicted sen‐
sitivity ¶Pk + 1|k ¶Rii from (28). This equation yields the sensi‐

tivity of the estimated state error covariance matrix P to
changes in R. These changes can be used to improve an ex‐
isting measurement point or considering an entirely new
measurement in the system.

In the previous section, the limited rank H is formulated
as per (31), which only consists of three measurement
points. We can use a full ranked H to calculate the sensitivi‐
ty of the error variance for every bus voltage magnitude or
branch current magnitude. For example, if a new voltage
magnitude measurement is installed at bus 20, what is the
change in error variance across all the bus voltage or branch
current magnitudes?

Figure 8 shows the sensitivity of voltage magnitude error
variance at bus nodes to the changes of voltage measure‐
ment locations, which shows a high sensitivity to bus volt‐
age measurements downstream of bus 9.
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TABLE I
COMPUTATION TIMES OVER FULL SIMULATION SET
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Computation time (ms)
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Fig. 8. Sensitivity of voltage magnitude error variance to voltage magni‐
tude measurements.
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The installation of voltage measurement sensors upstream
of bus 9 is not recommended since error variance will not
be improved. Similarly, Fig. 9 shows the effects of addition‐
al voltage magnitude measurements on branch current magni‐
tude error variance. This shows that the optimal location of
an additional voltage magnitude measurement will be around
bus 12, which has the highest sensitivity in error variance
for both bus voltage and branch current magnitudes. Figure
10 shows the corresponding changes in voltage magnitude
and branch magnitude MAE for an additional voltage mea‐
surement on bus 12.

F. IEEE 123-bus Test Feeder

The proposed method is tested on a modified IEEE 123-
bus test feeder to demonstrate the scalability of the algo‐

rithm. Like the IEEE 34-bus test case, the feeder only in‐
cludes positive sequence network. The consideration of a
three-phase unbalanced network can be achieved using the
unbalanced direct load flow method [33]. The load data is
generated using a complex-valued Wiener Process and run
over 100 simulation sets, each set with 200 time steps. The
number of measurements is limited to 10-bus voltage magni‐
tude and ten branch power flow, with the locations shown in
Fig. 11. Note that the bus voltage and branch power flow
are considered as separate and independent measurements
and do not consider that power flow measurements would al‐
so include a voltage and a current measurement. The mea‐
surement points are scattered to provide the visibility across
the network at approximate key locations.

The average error in voltage magnitude and voltage angle
across the full simulation set is shown in Fig. 12. The re‐
sults show a higher error at the extremities of the feeder.
Buses 66, 104 and 107 are the highest because there are lim‐
ited measurement points compared with other parts of the
feeder.

The NMEV of bus voltage and branch current magnitudes
is shown in Figs. 13 and 14, respectively. There is a strong
correlation between the ACKF predicted error variance and
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actual error variance for voltage magnitude. This allows easy
identification of buses that may have high error variance in
the estimation output. There is a good correlation in the pre‐
dicted branch current error variance compared with the actu‐
al one. However, there are some discrepancies. Firstly,
branch power flow measurements are not ideal for the
ACKF estimator since it relies on a linear calculation of net‐
work state. The algorithm implements an assumption to con‐
vert branch power flow to current and uses an angle compen‐
sation to correct the measurement model. Branch or injection
current measurements are preferred. Secondly, the number of
available measurement points is limited, which affects the
observability of the estimator. In general, the ACKF estima‐
tor can reasonably predict the error variance of the branch
current magnitude estimate.

VII. CONCLUSION

This paper demonstrates an alternative approach to DSE
based on ACKF and provides a generalized formulation of
the ACKF DSE to allow various types of measurements to
be incorporated into a complex-valued estimator. The results
demonstrate an improved performance of ACKF compared
with the traditional WLS method, particularly with limited
measurement points. The simulation results also demonstrate
the ability of ACKF method to provide an accurate estima‐
tion of error variance of bus voltage and branch current mag‐
nitudes based on randomly generated Wiener process com‐
plex-valued load data. In practical terms, this capability pro‐
vides vital information for systems relying on DSE, as the
error variance can be accurately estimated. The proposed sen‐
sitivity of error variance also allows operators to determine
optimal locations for additional measurements by showing
the changes in error variance across all bus and branch loca‐
tions in a simple offline calculation.

APPENDIX A
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where ni is the number of bus injection current measure‐
ments; nb is the number of branch current measurements;
and nv is the number of bus voltage measurements.

APPENDIX B

The following shows the derivation of the sensitivity of
the error covariance to the diagonal of Ri.
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A, B, and C are defined as follows:
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If we consider (B3), (B4), and (B5), (B2) can be re-writ‐
ten as:
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