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Physics-guided Deep Learning for Power System
State Estimation

Lei Wang, Qun Zhou, and Shuangshuang Jin

Abstract——In the past decade, dramatic progress has been
made in the field of machine learning. This paper explores the
possibility of applying deep learning in power system state esti‐
mation. Traditionally, physics-based models are used including
weighted least square (WLS) or weighted least absolute value
(WLAV). These models typically consider a single snapshot of
the system without capturing temporal correlations of system
states. In this paper, a physics-guided deep learning (PGDL)
method is proposed. Specifically, inspired by autoencoders, deep
neural networks (DNNs) are used to learn the temporal correla‐
tions. The estimated system states from DNNs are then checked
against physics laws by running through a set of power flow
equations. Hence, the proposed PGDL is both data-driven and
physics-guided. The accuracy and robustness of the proposed
PGDL method are compared with traditional methods in stan‐
dard IEEE cases. Simulations show promising results and the
applicability is further discussed.

Index Terms——State estimation, deep learning, deep neural
network (DNN), temporal correlation, power system.

I. INTRODUCTION

MACHINE learning is booming everywhere around the
world [1]. Deep learning has been applied in comput‐

er vision, speech recognition, natural language process, and
many other areas [2]. As an notable example, AlphoGo de‐
veloped by Google Deepmind employs deep reinforcement
leaning and has become the first computer program to defeat
a professional human Go player [3]. With these achieve‐
ments in computer science, the question arises on how to
bridge machine learning with power systems.

In the power industry, machine learning has been used for
load forecasting [4], [5]. In such application where the under‐
lying physical models are unknown, machine learning pres‐
ents a powerful tool to perform predictive analytics. Howev‐
er, most applications in power system analysis have concrete
physical models, e. g., power flow equations, and machine
learning may fall short compared to model-based approaches.

Power system state estimation is such an application

backed by detailed physical models. State estimation is criti‐
cal in power grid operations. It receives raw measurements
from a supervisory control and data acquisition (SCADA)
system and generates critical inputs for other applications
that require reliable estimates of current system states
[6], [7].

Weighted least square (WLS) based methods are common‐
ly used to estimate system states [7]. The measurement data
usually consist of real and reactive power injections, real
and reactive power flows, and bus voltage magnitudes, while
the state vector contains the voltage magnitudes and phase
angles at all buses. Due to instrument errors and communica‐
tion noises, a stochastic error term needs to be incorporated.
State estimation aims to obtain true states by maximizing the
likelihood of estimated states, equivalent to minimizing the
residuals between estimated and actual measurements.

Specifically, WLS-based state estimation can be represent‐
ed by:

z = h(x)+ ε (1)

where z is the measurement vector; h(×) is the nonlinear pow‐
er flow equation; x is the state vector consisting of voltage
magnitudes and phase angles; and ε is the noise vector as‐
sumed to follow Gaussian distribution with expectation E(ε)=
0 and covariance Cov(ε)=R [8], [9]. The WLS-based state
estimation will determine the optimal states by minimizing
the weighted residuals:

min
x̂

(z - h(x̂))T R-1 (z - h(x̂)) (2)

where x̂ is the estimated state vector; and R is the covari‐
ance matrix. Many research efforts have been dedicated to
improve the performance of state estimation. In [10], a sum‐
mary of synchrophasor technology is carried out to show its
improvement in power system. A robust least absolute value
(LAV) estimator is employed by taking advantage of phasor
measurement units (PMUs) to enhance the computation per‐
formance of LAV estimator [11]. Considering the coexis‐
tence of SCADA data and PMU data in a power system, a
hybrid state estimator has been formulated in [12] to dynami‐
cally trace the states based on weighted LAV. With PMU-
based linear estimation, it is proposed to run multiple copies
of a multi-area state estimator and the estimation efficiency
is improved [13].

Most approaches in the literature are considered as single-
snapshot estimation. At the estimation time t, only the mea‐
surement data at that exact moment is used to estimate the
system states. One of the concerns with this static view of
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the power system is that the dynamics are not fully cap‐
tured. In particular, power system conditions are constantly
changing due to weather, customer behaviors, and other
events. Therefore, system states are also correlated from
time to time, i.e., temporal correlations exist between states
at different times. Researchers have recognized this dynam‐
ics and incorporated into state estimation. For instance, a
forecasting aided state estimation is proposed to enhance the
estimation performance [14] and anomaly detection [15].
Similarly, time correlations in the PMU measurements are
modeled using autoregressive methods [16]. Incorporating
historical data, a robust data-driven state estimation is based
on robust nearest neighbor search [17]. In [18], a new state
estimation framework is proposed to account for measure‐
ment correlations and imperfect synchronization.

Nevertheless, the state dynamics and correlations are very
difficult to model explicitly, because the underlying physics
is unknown with random behaviors involved. This is where
machine learning finds its role in state estimation.

In this paper, we propose a physics-guided deep learning
(PGDL) state estimator that explores the temporal correla‐
tions between system states. In contrast to black-box model‐
ing, the proposed PGDL is both data-driven and first-princi‐
ple-based. Specifically, the true dynamics of power system
are unknown and difficult to model due to exogenous factors
such as weather and customer behaviors. Therefore, we
adopt the latest development in machine learning and apply
deep neural networks (DNNs) to learn the state dynamics
and correlations. The estimated system states are checked
against physics laws by running through a set of power flow
equations. It is noted that the combination of data-driven
and physical models are emerging in the field of machine
learning. Examples include using physics-informed neural
networks to solve nonlinear partial differential equations
[19] and physics-guided neural networks for temperature
modeling [20]. The proposed PGDL incorporates the physi‐
cal AC power flow model into the deep learning to form a
hybrid learning structure. The proposed data-driven state esti‐
mation method has been tested in IEEE 14-bus and IEEE
118-bus systems. The performance improvement is clearly
shown in the numerical results.

The remainder of this paper is organized as follows. Sec‐
tion II presents the machine learning framework. Section III
presents the structure of DNNs and the hybrid learning meth‐
od for state estimation. In Section IV, the performance is
evaluated in IEEE 14-bus and IEEE 118-bus systems. Sec‐
tion V discusses the findings from our study and Section VI
provides concluding remarks.

II. MACHINE LEARNING FRAMEWORK

The motivation behind our study is that machine learning
may be able to learn temporal correlations among different
states. The proposed deep learning based framework is de‐
scribed in Fig. 1.

In a power system, the load is constantly changing due to
underlying causes such as weather and customer behaviors.
Assume that the load at time t (d t) is correlated with the
load at time t - 1 (d t - 1), denoted by d t = l(d t - 1). This load cor‐

relation is translated to state correlation through the complex
operations of the power system to balance the load and gen‐
eration. The state correlation is represented by x t = f (x t - 1),
where f (×) denotes the nonlinear nature of power system op‐
erations. The correlations among state variables are then
translated to measurement correlations through the nonlinear
physical power flow model, denoted by z t = g(z t - 1). The tem‐
poral correlations of measurement data should be considered
in state estimation, whereas a single-snapshot state estima‐
tion lacks this consideration. In Fig. 1, x̂ t and x t are the esti‐
mated and real state values at time step t, respectively.

If we consider state estimation as an optimization prob‐
lem, the traditional method is formulated as in (2), which
minimizes the estimation errors for one time shot. On the
contrary, the state estimation with temporal correlations is
formulated as a look-ahead optimization problem:

min
x̂t
∑

t

(z t - h(x̂ t))
T R-1 (z t - h(x̂ t)) (3)

s.t.
x̂ t = f (x̂ t - 1) (4)

Note that the true dynamics of states f (×) is unknown and
difficult to model mathematically. Therefore, it is challeng‐
ing to model the state correlations. This motivates a data-
driven approach that learns the dynamics through historical
data. A DNN with sufficient learning capacity is suitable for
the large amount of data in a power system. The PGDL
framework uses DNN to learn the temporal correlations of
state variables while incorporating the physical model.

III. PGDL MODEL

The PGDL model that incorporates historical data and the
physical power flow model is proposed in this section. This
hybrid learning method employs DNNs to learn the state cor‐
relations while considering physical flows in a power system.
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Fig. 1. Deep learning based framework to capture state correlations.
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A. Physics-guided Learning Architecture

We propose a hybrid machine learning model inspired by
the emerging autoencoder in the artificial intelligent (AI)
field. As shown in Fig. 2, an autoencoder is a neural net‐
work that is trained to copy its input to its output with fully-
connected internal layers [2]. Internally, it has a hidden layer
(green box) that divides the neural network into two parts:
encoder and decoder. The autoencoder is initially designed
for dimension reduction so that the number of features can
be reduced to represent a system [21].

To apply autoencoders in state estimation, the measure‐
ment z is fed into the encoder, and the hidden layer output is
the estimated system states x̂, which can be considered as
features to represent the power system. The estimated states
x̂ then go through the decoder to output the reconstructed
measurement data ẑ. In the context of power system state es‐
timation, these measurements z come from the SCADA sys‐
tem consisting of real and reactive power injections at each
bus (Pi and Qi for bus i), and real and reactive power flows
on each transmission line (Pij and Qij for line ij). The esti‐
mated values of these measurements are denoted by z. The
system states x consist of voltage magnitude and angle at
each bus (Vi and θ i for bus i). The corresponding estimated
system states are denoted by x̂ .

It would be a pure data-driven method to use autoencoder
for state estimation without explanatory models. However,
with the domain knowledge of power systems, we could im‐
prove the autoencoder by incorporating the first principles in
the power system. The proposed physics-guided learning is
both data-driven and first-principle-based.

Figure 3 depicts the architecture of physics-guided learn‐
ing.

At time k, the DNN input is the measurement set zk =
[z k

1 z k
2 ...z k

m]T and the output is the corresponding estimated

state vector x̂k =[x̂k
1x̂k

2...x̂k
n]

T, where m is the number of
measurements and n is the number of states. The estimated
states x̂ then go through the physical measurement model
consisting the power flow equations in (5).
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Pi =∑
j = 1

N

ViVj (Gij cos(θ i - θ j)+Bij sin(θ i - θ j))

Qi =∑
j = 1

N

ViVj (Gij sin(θ i - θ j)+Bij cos(θ i - θ j))

Pij =-V 2
i Gij +ViVj (Gij cos(θ i - θ j)+Bij sin(θ i - θ j))

Qij =-V 2
i Bij +ViVj (Gij sin(θ i - θ j)-Bij cos(θ i - θ j))

(5)

where Gij and Bij are the real and imaginary parts in the ad‐
mittance matrix, respectively; and N is the number of buses
in the power system.

As a result, the estimated measurement vector ẑ is generat‐
ed. To train the DNN, the loss function is the cumulative er‐
ror between actual and estimated measurement vectors. The
error is then back-propagated through the physical model lay‐
er and the neural network layers, so that weights and biases
of the neural network are adjusted accordingly.

B. Data and Training Flow

The implementation details are described in Fig. 4. The
PGDL model consists of multiple stages: data acquisition,
initialization, pre-training, validation, and online estimation,
where L is the loss function; w is the weight matrix of neu‐
ral network; and w0 is the parameter vector of the pre-
trained DNNs.

First, the measurement data are acquired. In our case stud‐
ies, the data come from simulations, but in reality, the data
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Fig. 2. Autoencoder for state estimation.
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are acquired from the SCADA system. The data are then di‐
vided into the training data, validation data, and testing data.
The training data are used to train the DNNs (two DNNs are
selected and introduced in Section III-C). For the pre-train‐
ing stage, different learning rates and initialization methods
are used. Note that the pre-training is an offline batch train‐
ing, where the losses are calculated and back-propogated
through the neural network for the update of the weights. Af‐
ter the DNNs are trained, validation data are used to assess
the overall performance of the DNNs. If the performance is
satisfied, go on to online estimation with new data. Other‐
wise, redefine the DNN network and repeat the process.
More detailed training procedure can be found in Section
III-D.

C. DNNs

DNNs are used as the encoder to map the nonlinear rela‐
tionship of measurements z and states x. It is well-known
that neural network has the universal approximation capabili‐
ty to approximate nonlinear functions [22]. In this paper,
two typical DNNs are studied: feedfoward neural networks
(FFNNs) and long short-term memory (LSTM) neural net‐
works.
1) FFNNs

A multi-layer FFNN is first utilized to build up the encod‐
er in the PGDL model. As shown in Fig. 5, the input layer
has m neurons,and the output layer has n neurons. Usually,
n= 2N - 1. The width and depth of network will be deter‐
mined by the complexity of the power system. For the hid‐
den layers, the hyperbolic tangent (tanh) activation functions
are exploited. It is proven that the hyperbolic tangent net‐
works, unlike the sigmoid, do not suffer from the saturation
behavior of the top hidden layers due to its symmetry
around 0 [23].

Regarding the IEEE 14-bus and 118-bus systems, the de‐
tails of FFNN structure are shown in Table I.

Note that FFNN only takes the measurement at time t as
the input, and hence does not specifically learn the temporal
correlations. FFNN is chosen as a comparing model to test

the hypothesis that adding temporal learning capability in
the encoder DNN would enhance the overall performance of
system estimation. This hypothesis is verified in the numeri‐
cal results in Section IV.
2) LSTM Neural Network

LSTM neural network is recurrent neural network (RNN)
that is suitable to capture the state dynamics [24]. Unlike the
conventional RNN, LSTM can alleviate the exploding and
vanishing gradient problems due to the memory cell and gat‐
ing mechanism [25]. A common LSTM unit comprised of a
memory cell and three gates is described in Fig. 6.

For a single LSTM unit, the inputs are the measurement
vector z t at time t and hidden vector h t - 1 from last time step,
while the output is h t. There are three gates: input gate i t,
forget gate f t, and output gate o t. The LSTM unit will learn
the dependencies between the data in the input sequence.
The input gate manages the values flowing into the memory
cell from the inputs. The forget gate determines which part
is passed to the next step. As for the output, it is a product
of the result of output gate and the activation of the memory
cell. The mathematical expressions of LSTM are given as
follows: f t = σ(W f z t +U fht - 1 + b f), i t = σ(W i z t +U iht - 1 + b i), c t =
f tc t - 1 + i t (tanh(Wc z t +Ucht - 1 + bc)), o t = σ(Wo z t +Uoht - 1 + bo),
and h t = o t tanh(c t), where W f, W i, Wc, Wo, U f, U i, Uc and Uo

are weights that connect different layers; b f, b i, bc and bo are
the biases with each individual gate; and σ(×) is the sigmoid
activation function.

To improve the learning capability, multiple LSTM units
are stacked as shown in Fig. 7 and the last layer is a fully
connected linear layer.

Note that the input of LSTM is also the measurement at
time t, but because of its recurrent nature, all the previous
time steps are implicitly considered. Figure 7 shows an un‐
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Fig. 5. FFNN-based state estimator.

TABLE I
STRUCTURES OF FFNN IN IEEE TEST CASES

System

IEEE 14-bus

IEEE 118-bus

m

30

330

li (i = 12...k - 1)
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rolled LSTM in time, where it is two dimensional in time
and space.

For the IEEE cases in this paper, Table II provides the de‐
tails of stacked LSTM network configuration.

D. Training Procedure

The training procedure of two DNNs consists of multiple
implementation steps including configuration and initializa‐
tion of DNN, defination of loss functions and regularization,
and selection of proper learning algorithms and learning
rates.
1) Configuration and Initialization of DNN

The performance of DNNs can vary depending on the con‐
figuration and initialization. For each dataset, we run DNNs
with 20 different configurations and random seeds, and se‐
lect the DNNs with the best performance on the validation
data, in order to achieve reliable online estimation for the
test data. For the initialization, several methods are attempt‐
ed including random initialization, uniform initialization, and
Xavier initialization [23]. The neural networks are then
trained using target values of voltage angels and magnitudes
equal to [00...11...1]T, where the numbers of zeros and
ones equal to those of voltage angles and magnitudes in the
state vector, respectively, which is similar to the flat start in
WLS state estimation.
2) Defination of Loss Functions and Regularization

The loss function needs to be defined to train and update
weights and biases of DNNs. The cumulative mean square
error (MSE) loss function is used:

L= 1
m∑t

(z t - ẑ t)
T (z t - ẑ t) (6)

For online training and estimation, a regularization tech‐
nique is implemented to maintain the stability of the trained
DNNs. An L2_SP penalty [26] is added to encourage the sim‐
ilarity with the starting point, i. e., the parameters of pre-
trained model. The loss function with L2_SP penalty can be
formulated as (7).

L= 1
m

(z - ẑ)T (z - ẑ)+  w -w0 (7)

3) Selection of Learning Algorithms and Learning Rates
The loss is then back-propagated through the physical

model layer as well as the neural network layer. Hence, the
chain rule is expressed by:

¶L
¶w

=
¶L
¶ẑ

¶ẑ

¶x̂

¶x̂
¶w

(8)

wnew =wold - η
¶L
¶w

(9)

where η is the learning rate; and wnew and wold are the new
and old weight matrices of neural network, respectively. In

this work, a constant learning rate, a decayed learning rate,
and a cyclical learning rate are used to improve the perfor‐
mance as in [27]. The update of weights and biases is based
on the gradient-descent algorithm [28]. Specifically, mini-
batch gradient descent is employed to pre-train the DNN
models. For online training and estimation, stochastic gradi‐
ent descent is used to continuously update model parameters
as new data points come in.

IV. NUMERICAL RESULTS

In this section, the proposed PGDL is implemented in two
standard IEEE power systems, and the code can be found on
Github [29]. The performance is evaluated and compared
with conventional WLS-based and WLAV-based state estima‐
tions in terms of accuracy and robustness. The performance
measure is mean absolute estimated error (MAEE):

MAEE =
1
N∑k = 1

N

| x̂k - xk | (10)

The simulation is carried out in a predefined time period,
and the mean and standard deviation of the MAEEs are com‐
pared.

A. Simulation Setup

The simulation data are generated in the IEEE 14-bus and
118-bus systems. The IEEE 14-bus system has 2 generators
and 20 loads, and the 118-bus system has 19 generators and
91 loads. The load profile is downloaded from NYISO and
scaled down for the two systems [30]. A one-day normalized
load profile with 5 min time interval is given in Fig. 8.

The true states and measurement vectors are generated us‐
ing MATPOWER 6.0 [31]. The states consist of voltage
magnitude and angle of each bus, which are 27 and 235 for
the IEEE 14-bus and 118-bus systems, respectively (the volt‐
age angle of reference bus is 0).

After obtaining the measurement vectors z̄ including
[Vi PiQiPijQij]

T from MATPOWER, white Gaussian nois‐
es are added to form the noised measurements z = z̄ + aσ,
where aN(01) and σ is the standard deviation. The num‐
ber of each measurement and standard deviation are shown
in Table III. Note that the number of measurements is great‐
er than that of states to ensure the observability [32].

The time horizon of the dataset is 4 months, i. e., 34560
data points with 5 min time interval. The first two months
with 17280 data points are split into two parts: training
(70%) and validation (30%). The training data are used in

TABLE II
STRUCTURES OF STACKED LSTM IN IEEE TEST CASES

System

IEEE 14-bus

IEEE 118-bus

Stacked LSTM

Input size

30

330

No. of layers

2

2

Hidden size

128

512

Size of linear
layer

27

235
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Fig. 8. Normalized load profile from NYISO.
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both initialization and pre-training stages. The validation da‐
ta are used to validate the PGDL performance. The remain‐
ing data of the two months are used for online training and
state estimation, and the performance of the last day (288 da‐
ta points) is reported for comparative study.

B. Accuracy Analysis

The MAEEs for IEEE 14-bus system are presented in
Figs. 9 and 10. It is observed that WLS has the largest varia‐
tions of estimation errors. In contrast, FFNN and LSTM re‐
sult in small error variations. In terms of accuracy, the two
neural networks also have smaller average MAEEs. To com‐
pare the configurations of two neural networks, it is found
that while the average MAEEs are almost the same, LSTM
has lower standard deviation of errors than FFNN.

For detailed analysis, the mean and standard deviation are
described in Table IV. Generally, WLS has the highest aver‐
age error for voltage magnitude V and angle θ, while two

deep learning based models are more accurate. FFNN and
LSTM also have lower standard deviation of MAEE, which
indicates more stable performance throughout the testing pe‐
riod. It is also noticed that the improvement of voltage mag‐
nitude estimation is more significant than voltage angle esti‐
mation.

To generalize the proposed approach, the IEEE 118-bus
system is used to test the performance in a larger system.
Figures 11 and 12 provide a graphical illustration of the
MAEEs between WLS and two DNN-based methods. It
clearly shows that LSTM provides the best estimates for
voltage magnitudes, while FFNN performs the best for volt‐
age angles.

Table V shows a statistical comparison of WLS and two
DNN-based approaches. Overall, the DNN-based methods
outperform WLS. LSTM performs significantly better on
voltage magnitude, while its performance of voltage angle
estimation are on par with WLS. On the other hand, the
DNN-based method are much more stable than WLS estima‐
tion with lower error variance.

TABLE III
MEASUREMENT SIZES AND STANDARD DEVIATION OF IEEE TEST SYSTEMS

Measurement

Vi

Pi

Qi

Pij

Qij

Size

IEEE 14-bus
system

1

7

5

7

10

IEEE 118-bus
system

1

118

118

44

49

Standard deviation

0.004

0.010

0.010

0.008

0.008

TABLE IV
MEAN AND STANDARD DEVIATION OF MAEES IN IEEE 14-BUS SYSTEM

Method

WLS

FFNN

LSTM

Mean

V

0.0046

0.0017

0.0021

θ

0.0059

0.0044

0.0037

Standard deviation

V

0.0022

0.0008

0.0006

θ

0.0029

0.0023

0.0014
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Fig. 11. MAEEs of voltage magnitudes in IEEE 118-bus system. (a)
MAEE at time-series data points with 5 min time interval. (b) Boxplot of
MAEE with different methods.
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Fig. 12. MAEEs of voltage angles in IEEE 118-bus system. (a) MAEE at
time-series data points with 5 min time interval. (b) Boxplot of MAEE with
different methods.
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with different methods.
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Fig. 10. MAEEs of voltage angles in IEEE 14-bus system. (a) MAEE at
time-series data points with 5 min time interval. (b) Boxplot of MAEE with
different methods.
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System-wise estimates versus true states are also plotted
in Figs. 13 and 14. The results are consistent with the previ‐
ous observations. Specifically, all three methods track the
voltage angles very well while LSTM shows slightly better
results.

For voltage magnitude, WLS has the worst performance,
while LSTM is the best and outperforms the FFNN. The re‐
sults further demonstrate that the temporal learning capabili‐
ty in the encoder DNN would enhance the overall estimation
performance.

Regarding the runtime, both DNNs could achieve reason‐
ably good execution time. Note that the network pre-training
is conducted offline and does not affect the online execution
time. For online estimation, only one-step forward calcula‐
tion and one-step backward propagation are involved, and
both are algebraic calculations leading to relatively fast run‐
time. Specifically, at each time step, DNNs are executed in
0.005 s for the IEEE 14-bus system and 0.02 s for the 118-
bus system. FFNN is slightly faster than LSTM due to its
simpler structure.

C. Robustness Analysis

A state estimator is considered statistically robust if the es‐

timated states withstand deviations of measurements [7]. We
compare the robustness of PGDL to WLS and the more ro‐
bust WLAV. WLAV attempts to find the estimated states by
minimizing the L1 norm between real measurements and esti‐
mated measurements. We implement the WLAV state estima‐
tor using IPOPT [33].

To test the robustness, 2%-3% measurements are random‐
ly selected and replaced with corrupted data. The results of
the last day are used to test the robustness. Three corrupted
data scenarios are considered as follows.

1) Scenario 1: the magnitudes of selected measurements
are contaminated with 20 times of standard deviation.

2) Scenario 2: the selected measurements are set to be ze‐
ro, representing missing data in reality.

3) Scenario 3: the signs of selected measurements are re‐
versed, representing mis-communication in reality.

For each scenario, multiple simulation runs are conducted
and each run has 24 hours (288 observations) of single sys‐
tem snapshots.

For the IEEE 14-bus system with 30 measurements, 50
simulation runs are conducted with 2 corrupted data points
randomly selected for each run. Note that both WLS and
WLAV have non-converging cases. For example, WLS has
1, 7, and 11 non-converging cases for three scenarios, respec‐
tively, while WLAV has 1 non-converging case for scenario
1. Note that PGDL methods will always produce results
without convergence concerns. We remove non-convergence
cases for WLS and WLAV, and the results are shown in Fig.
15. It is observed that LSTM-based model outperforms the
others in all three scenarios. The LSTM-based model produc‐
es the lowest median in errors and smaller inter-quartile
range compared to WLS and WLAV. Surprisingly, FFNN
shows the worst performance in all four methods. This is be‐
cause non-converging cases are not counted in WLS and
WLAV.

For the IEEE 118-bus system with 330 measurements, 20
simulation runs are conducted with 5 corrupted data and 10
corrupted data that are randomly selected, respectively. The
results are reported in Fig. 16. It can be observed that the

TABLE V
MEAN AND STANDARD DEVIATION OF MAEES IN IEEE 118-BUS SYSTEM
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Fig. 13. Voltage angles for IEEE 118-bus system.
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Fig. 14. Voltage magnitudes for IEEE 118-bus system.
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overall performance of LSTM is reasonably good compared
to those of other methods. In all three scenarios, LSTM has

the lowest average errors while WLAV has the lowest error
variance.

Overall, comparing two different DNNs, the mean accura‐
cy improvement of one over the other is subtle given that
both methods achieve far better results than WLS. However,
LSTM is definitely more stable than FFNN in terms of low‐
er standard deviation of the error index. This can be further
seen from the robustness test, where FFNN fails to maintain
a low error index with corrupted data, while LSTM remains
high accuracy and stable performance.

V. DISCUSSION

This paper investigates the possibility of combining ma‐
chine learning with physical models for state estimation. The
accuracy and robustness are examined in the IEEE 14-bus
and 118-bus systems. Some aspects regarding the applicabili‐
ty are worthy to be discussed:

1) Machine learning can be used in state estimation. How‐
ever, it is not intended to replace physics-based methods.
Rather, it can be used in combination when WLS or WLAV
could not yield converged solutions.

2) Incorporating physical models in the machine learning
algorithms results in meaningful results for state estimation,
and improves both accuracy and robustness.

3) The performance of state estimator can be improved by
learning the existing temporal correlations. This is demon‐
strated by the better performance of LSTM compared to that
of FFNN.

VI. CONCLUSION

A PGDL state estimator is proposed in the paper. The
learning capacity of DNNs is fully exploited to model the
temporal correlations among system states, in contrast to
snapshot estimation by traditional methods. In addition, un‐
like the purely data-driven supervised learning, nonlinear
power equations are attached and the deviation of estimated
measurements from actual observed values is taken as the
loss to train the neural networks. As a result, the proposed
PGDL method shows higher accuracy compared to WLS,

and is more robust to corrupted data compared to WLS and
WLAV. The machine-learning-based state estimation appears
to be promising in real control centers, but it is not intended
to replace but assist in physics-guided state estimation. As
for the future work, system parameters errors need to be con‐
sidered.
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