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Performance Improvement of Artificial Neural
Network Model in Short-term Forecasting of

Wind Farm Power Output
Sergio Velázquez Medina and Ulises Portero Ajenjo

Abstract——Due to the low dispatchability of wind power, the
massive integration of this energy source in power systems re‐
quires short-term and very short-term wind power output fore‐
casting models to be as efficient and stable as possible. A study
is conducted in the present paper of potential improvements to
the performance of artificial neural network (ANN) models in
terms of efficiency and stability. Generally, current ANN mod‐
els have been developed by considering exclusively the meteoro‐
logical information of the wind farm reference station, in addi‐
tion to selecting a fixed number of time periods prior to the
forecasting. In this respect, new ANN models are proposed in
this paper, which are developed by: varying the number of pri‐
or 1-h periods (periods prior to the forecasting hour) chosen for
the input layer parameters; and/or incorporating in the input
layer data from a second weather station in addition to the
wind farm reference station. It has been found that the model
performance is always improved when data from a second
weather station are incorporated. The mean absolute relative er‐
ror (MARE) of the new models is reduced by up to 7.5%. Fur‐
thermore, the longer the forecasting horizon, the greater the de‐
gree of improvement.

Index Terms——Artificial neural networks (ANN), wind power
forecasting, model performance, wind power output.

I. INTRODUCTION

A major impediment to the large-scale integration of
wind power in electrical systems is the low dispatch‐

ability of this energy source. The effects of variations in
wind speed, and hence wind power, are not only observed
on a year-to-year or season-to-season scale, but also on a
within-day scale [1]-[5]. A strategy that can be employed to

improve wind energy integration in electric power systems is
to optimize the performance of short-term forecasting mod‐
els of wind power production. This strategy is the focus of
the present study.

The direct consequences of the low dispatchability of
wind power on electric power systems can be both technical
and economic. Supply and demand adjustments in electric
power systems are made 24-36 hours in advance. Any mis‐
matches that might arise between supply and demand fore‐
casting are subsequently corrected on the day itself [6] - [9].
As the result of imprecise forecasting, the mismatch correc‐
tion entails additional costs for the electric power system
[7], [10]. These extra costs are generally absorbed by the
end user and/or electricity producer, with the latter thus bur‐
dened by an additional production cost.

Other strategies have been used to minimize the problem
described above. One involves the direct estimation of the
net energy demand of the electric power system, which can
be understood as the difference between total demand and
the energy generated by renewable sources. In [11], a model
is proposed for direct forecasting of net energy demand
which is validated with data from different electric power
systems. Reference [12] compares a direct forecasting model
of net energy demand with different indirect forecasting strat‐
egies.

In the electricity market, the matching of supply and de‐
mand is generally performed for 1 hour periods. For this rea‐
son, in an analysis of model forecasting performance, it is
very important to evaluate the error for 1 hour periods, to
study model performance for different forecasting horizons,
and to evaluate the stability of the error in the time horizon
in which the forecasting is made.

Numerous studies can be found in the literature on the de‐
velopment of short-term forecasting models. Different tech‐
niques and approaches have been analyzed and proposed. In
most cases, good performances for specific forecasting hori‐
zons have been obtained. The techniques range from simple
heuristics [13] - [17] to artificial intelligence [18] - [29]. This
paper focuses on models which employ the technique of arti‐
ficial neural networks (ANNs) to forecast wind power pro‐
duction [21], [22], [24]-[26], [28], [29].

In [29], the proposed forecasting model is developed
based on the improvements of the Kriging interpolation
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method and empirical mode decomposition, which uses a
new forecasting engine based on neural networks. To anal‐
yse the results, the mean absolute percentage error (MAPE),
normalized mean absolute error (NMAE) and normalized
root mean square error (NRMSE) metrics are used, calculat‐
ed as the mean value in the forecasting horizons (24 hours
and 6 hours). As in [29], models have been developed for
different forecasting horizons [21], [22], [28]. However, an
extensive analysis of the literature has found that the models
developed to date only consider a specific and fixed number
of prior 1-h periods (periods prior to the forecasting hour). It
should also be noted that, in all the studies consulted, the
meteorological data used as input layer parameters corre‐
spond exclusively to the reference weather station (WS) of
the wind farm. In no case is the meteorological information
used from additional WSs other than the reference WS of
the wind farm. Finally, the metrics used to assess model per‐
formance in all these studies are obtained as the mean value
of the forecasting time horizon. As previously stated, consid‐
ering that the matching of supply and demand in the electric‐
ity market is performed for 1 hour periods, there is an addi‐
tional interest in the study of the possible variation of the
metrics within that time frame for each of the hourly periods.

This paper considers possible improvements, in terms of
efficiency and stability, to the performance of ANN-based
models for wind power forecasting. For this purpose, an
analysis is made on the improvement of model performance
of: varying the number of prior 1-h periods (periods prior to
the forecasting hour) chosen for the ANN input layer param‐
eters; and/or incorporating in the input layer data from a sec‐
ond WS in addition to the data from the wind farm refer‐
ence station. The analysis is undertaken for a wide range of
forecasting horizons. Based on the above, a total of up to
175 ANN models are generated, and the results are com‐
pared by applying the models to two actual wind farms locat‐
ed in the Canary Islands, Spain.

The aim of this paper is to make the following original
contributions.

1) It investigates the improvement in the efficiency and
stability of ANN models by varying the number of prior 1-h
periods (periods prior to the forecasting hour and hereinafter
referred to as n), chosen for incorporation of the input layer
parameters.

2) It studies the improvement in ANN model performance
of the additional incorporation in the input layer of meteoro‐
logical data from WSs other than the wind farm reference
station.

Both effects are analyzed for different forecasting hori‐
zons.

II. METHODOLOGY

Figure 1 shows the methodology for the implementation
of different ANN models. It shows the combination of pa‐
rameters which are considered for the input and output layer
neurons in the generation process of different ANN models.
The various parameters are defined as follows: ti is the time
instant based on which the forecasting is made; and Vti

, Dti

and Pti
are the wind speed, wind direction and the wind

farm power output at instant ti, respectively.

The following data are used in all the models: historical
wind speed and direction data obtained from the wind farm
reference WS, and historical power production data of the
wind farm. In some models, which will be explained subse‐
quently, the historical wind speed and direction data of a sec‐
ond WS are used in addition to the data of the wind farm
reference station.

The output layer is composed of the power output values
for different forecasting horizons.

The number of hours prior to the forecasting hour, n, and
the length of the forecasting horizon that is being forecasted,
m, are variable.

A. Architecture of ANN Employed

The ANNs used to generate the models are composed of
three layers with feedforward connections. For this purpose,
multi-layer perceptron (MLP) topologies have been used
[30], [31]. In order not to increase the length of the training
period excessively, a single layer of hidden neurons is used.
This architecture has been shown to have the capacity to sat‐
isfactorily approximate any continuous transformation [30],
[31]. Various prior tests have been carried out to choose the
number of hidden neurons by varying the number of input
signals. It is found that using more than 20 neurons merely
increases the time required for model training and validation
without improving the results. It is therefore decided to use
a total of 20 neurons in the hidden layer.
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validation
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Test
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Data period (1 year)

Subset of data 
available

Estimated 
data of wind 
power output

Input
layer

Output
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Fig. 1. Methodology to obtain forecasting models.
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The architectures are trained using the backpropagation al‐
gorithm with sigmoidal activation function [26], [27]. The
Levenberg-Marquardt algorithm is used to minimize the
mean square error committed in the learning process
[30], [32].

To carry out the training and validation stages used to gen‐
erate the model and the test stage of the network, the avail‐
able annual data series for each parameter are divided into
random and different subsets, as shown in Fig. 1. The pro‐
portion of data selected for each of the stages is 75%, 15%
and 10%, respectively.

As can be seen in Fig. 1, the training and validation data
subsets are used to generate the ANN model. The test data
subset is used to evaluate the performance of the model.

The 10-fold cross-validation technique is used for the pro‐
cess of model generation and evaluation. The data subset of
the test stage is used in each of the iterations. The error as‐
signed to each model is the arithmetic mean of those ob‐
tained in the test stage for each of the iterations.

The various studies are performed using neural network
tools available in the MATLAB software package.

B. Study Cases

1) Case A: comparison of efficiency and stability of differ‐
ent ANN models, which are obtained by varying the number
of periods prior to the forecasting hour (n) chosen for incor‐
poration of different parameters in the input layer.

The number of prior periods n and the number of forecast‐
ing horizon periods m are the studied variables. Different
combinations of n and m generate different models whose
performances will be analyzed. For Case A, both n and m
are permitted to take the values 3, 6, 12, 24 and 36, i.e., five
different models are generated for each forecasting horizon,
and thus the total number of generated models is 25. This
methodology is applied to the two wind farms.

To study the models in terms of the stability of forecast‐
ing, the results obtained for each of the periods within the
forecasting horizon m are compared.

Figure 2 shows the structure of the neural network for this
study case. The number of neurons of the output layer de‐
pends on the forecasting horizon, and will thus fluctuate be‐
tween 3 and 36. For the input layer, the number of neurons
will also vary depending on the value of n, from 9 (n = 3) to
108 (n = 36).

2) Case B: comparison of performance of ANN models
when additionally incorporating in the input layer the data
from a second WS other than the reference station of wind
farm. For Case B, both n and m could take the same values
as indicated for Case A.

Figure 3 shows the structure of the neural network for the
generation of models in Case B.

In Case B, the input layer of the ANN incorporates the da‐
ta from a second WS in addition to that of the reference WS
of the wind farm. To generate different models, the data of
the reference WS of each wind farm (WS1 and WS9) are
combined with the data of each of the seven other WSs,
WS2 to WS8 (Table I). Therefore, for Case B, 175 different
models are generated (25× 7). After applying these models
to each wind farm, their results are compared.

The number of neurons in the input layer also varies, de‐
pending on the value of n, from 15 (n = 3) to 180 (n = 36).

The variation in the number of output layer neurons is the
same as in Case A.

C. Metrics Used to Compare Different Models

To compare the performance of the different models gener‐
ated for Cases A and B, metrics (1) and (2) are used:

MARE =
1
m∑j = 1

m 1
T - r∑i = 1

T - r ||Pji - P̑ji
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Fig. 2. Schematic representation of neural network for generation of fore‐
casting models in Case A.
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Fig. 3. Schematic representation of neural network for generation of fore‐
casting models in Case B.

TABLE I
INFORMATION OF WSS

Code

WS1

WS2

WS3

WS4

WS5

WS6

WS7

WS8

WS9

Height above
ground level (m)

40

10

10

10

13

10

10

10

40

Latitude
(north)

27º54′08″

27º51′36″

28º27′10″

28º57′07″

28º01′36″

28º07′30″

27º56′08″

28º02′35″

29º05′47″

Longitude
(west)

15º23′17″

15º23′13″

13º51′54″

13º36′00″

15º23′16″

15º40′37″

15º25′24″

16º34′16″

13º30′21″

Altitude (m)

16

3

24

10

5

472

186

51

457
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where MARE is the mean absolute relative error for the fore‐
casting horizon; T is the number of data in the test stage
(see Fig. 1); r = T -m- n; MAREj is the mean absolute rela‐
tive error for the forecasting period j; Pj and P̂j are the actu‐
al and estimated wind farm power outputs in the forecasting

period j, respectively; P̄j and P̑̄j are the mean values of Pj

and P̂j, respectively; R is the mean value of the Pearson cor‐
relation coefficient between the estimated and actual wind
farm power outputs for the forecasting horizon; and Rj is the
mean Pearson correlation coefficient between the estimated
and actual wind power outputs for the forecasting period j.

III. MATERIALS

The meteorological data (wind speed and direction) record‐
ed by nine WSs located in four of the seven islands of the
Canary Archipelago (Table I) are used in this paper. The
mean hourly wind speed and direction data from 2008 are
used in all cases. The heights of the WSs are expressed in
metres above ground level.

To validate and compare the results obtained with the dif‐
ferent models, the information corresponding to two wind
farms located on two of the seven islands of the Canary Ar‐
chipelago is used. Tables II and III show the geographic co‐
ordinates of the wind turbines (WT1-WT9) of the two wind
farms (WF1 and WF2). The hourly wind power output data
for 2008 are used for this study.

Stations WS1 and WS9 in Table I are the reference WSs
of wind farms WF1 and WF2, respectively. The data of

WS1 and WS9 and the wind power production values are
provided by the respective owners of the wind farms. The
data from the seven additional WSs are provided by the Ca‐
nary Islands Technological Institute (Spanish initials: ITC)
and Spain’s Sate Meteorological Agency (Spanish initials:
AEMET).

Table IV shows the results obtained for the coefficients of
linear correlation (3) between the mean hourly wind speeds
of the different WSs.

CC =
∑

i = 1

NG

( )Vi - V̄ ( )V ′i - V̄'

∑
i = 1

NG

( )Vi - V̄
2 ∑

i = 1

NG

( )V ′i - V̄'
2

(3)

where CC is the Pearson correlation coefficient between the
wind speeds of two WSs; Vi and V ′i are the speeds at instant
i of the two WSs subject to correlation; V̄ and V̄' are the
mean values of Vi and V ′i , respectively; and NG is the total
number of data of the series. In this case, as a series of hour‐
ly data equivalent to one year is available, NG = 8760.

IV. RESULTS AND DISCUSSION

The discussion focuses on the two cases proposed in the
methodology. For the various figures corresponding to the re‐
sults, t - 3 indicates that 2 periods prior to the forecasting pe‐
riod are chosen in addition to the forecasting period (titi -
1ti - 2), and t + 3 indicates a forecasting horizon of 3 peri‐
ods (ti + 1ti + 2ti + 3) starting from the period when the fore‐
casting is made. The same is true for all combinations.

A. Discussion of Results for Case A

Figures 4 and 5 show the results for the MARE and R met‐
rics for the 25 generated models. In all practical cases, the
MARE and R values improve as n increases. The only excep‐
tion is for case t - 36 compared to t - 24, where the improve‐
ment is minimal or not observed. Besides, the degree of im‐
provement increases as m increases (t + 12, t + 24 and t + 36).

For the forecasting horizons t + 12, t + 24, t + 36, the maxi‐
mum improvements obtained for MARE between the values
for n = 3 and n = 36 are 13.3%, 11.2% and 10%, respectively.
For the same cases but for R, the corresponding improve‐
ments are 7.9%, 8.9% and 9.2%, respectively.

TABLE II
GEOGRAPHIC COORDINATES OF WIND TURBINES IN WF1

Code

WF1-WT1

WF1-WT2

WF1-WT3

WF1-WT4

x (m)

461764

461839

461681

461753

y (m)

3086314

3086301

3086067

3086038

z (m)

3

1

5

2

TABLE III
GEOGRAPHIC COORDINATES OF WIND TURBINES IN WF2

Code

WF2-WT1

WF2-WT2

WF2-WT3

WF2-WT4

WF2-WT5

WF2-WT6

WF2-WT7

WF2-WT8

WF2-WT9

x (m)

645043

645147

645186

645264

645333

645403

645406

645554

645664

y (m)

3219819

3219752

3219638

3219548

3219462

3219369

3219213

3219194

3219133

z (m)

486

478

473

464

456

448

440

425

405

TABLE IV
COEFFICIENT OF LINEAR CORRELATION BETWEEN WIND SPEEDS OF

DIFFERENT WSS IN 2008

Code

WS1

WS2

WS3

WS4

WS5

WS6

WS7

WS8

WS9

Coefficient of linear correlation

WS1

1.00

0.81

0.27

0.34

0.74

0.73

0.77

0.50

0.51

WS2

0.84

1.00

0.19

0.25

0.79

0.74

0.87

0.44

0.54

WS3

0.27

0.19

1.00

0.70

0.16

0.16

0.18

0.16

0.11

WS4

0.34

0.25

0.70

1.00

0.20

0.21

0.22

0.20

0.11

WS5

0.74

0.79

0.16

0.20

1.00

0.49

0.78

0.21

0.44

WS6

0.73

0.74

0.16

0.21

0.49

1.00

0.61

0.62

0.54

WS7

0.77

0.87

0.18

0.22

0.78

0.61

1.00

0.39

0.46

WS8

0.50

0.44

0.16

0.20

0.21

0.62

0.39

1.00

0.35

WS9

0.51

0.54

0.11

0.11

0.44

0.54

0.46

0.35

1.00
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To study the forecasting stability, an analysis has been
made for the case of forecasting horizon t + 24, in which the
number of forecasting periods is significant. Figure 6 shows
the results of the variation of the relative error in different
forecasting periods, MAREj, for this specific case differentiat‐
ed according to n. It can be seen that the relative error stabi‐
lizes earlier as n increases.

Figure 7 shows that the forecasting stability is analyzed
for all the forecasting horizons.

This analysis is made on the basis of the standard devia‐
tion of relative error in the forecasting horizon:

SDV =
1

m- 1∑j = 1

m

( )MAREj -MARE
2

(4)

where SDV is the mean standard deviation of MARE for a
forecasting time horizon m.

It can be seen in Fig. 7 that for all the forecasting hori‐
zons, the SDV/MARE value decreases significantly as the
number of prior hours n increases. This significant improve‐
ment in the stability of models is observed even for the low‐
est forecasting horizons. Only for the particular case of fore‐

casting horizon t + 3 and when the horizon passes from
t - 24 to t - 36, no improvement is observed.

As an example, we will now proceed to analyze the cases
of the forecasting models t + 12 and t + 24. To date, in the
ANN models studied in the literature, the number of prior
periods n chosen to generate the models has always been
fixed. Assume that n is chosen as 12 for a standard model.
As shown in Fig. 4, the MARE value is 0.2866 for the t + 12
model and 0.3382 for the t + 24 model, respectively. As
shown in Fig. 7, the corresponding values for the stability of
the relative error are 17.4% and 14.4%, respectively. Accord‐
ing to the analysis made with Case A, the performance of
these models can be improved by choosing a higher value of
n. As shown in Fig. 4, if n = 24, the MARE values decrease
to 0.2783 and 0.3206, respectively. Similarly, as shown in
Fig. 7, for n = 24, the stability of the relative error in the
forecasting improves to 15.8% and 12.8%, respectively.

B. Discussion of Results for Case B

For Case B, the MARE and R results of this case with two
WSs (MAREB, RB), are compared with those of Case A with
one WS (MAREA, RA), as shown in (5) and (6).

DMARE =
1
7∑p= 1

7 MAREB -MAREA

MAREA

´ 100% (5)

DR=
1
7∑p= 1

7 RB -RA

RA

´ 100% (6)

It can be seen in Figs. 8 and 9 that all the models generat‐
ed for Case B achieve an additional improvement in perfor‐
mance compared to that for Case A. This additional improve‐
ment is in relation to the developed ANN models, where ex‐
clusive data is used from a single WS. It can also be ob‐
served that, in general, the degree of improvement increases
as m increases. This degree of improvement slows down for
forecasting horizons longer than 24 hours.

The maximum additional improvements in model perfor‐
mance are seen in forecasting horizons t + 24 and t + 36
(7.5% and 5.5% for MARE and 3.7% and 5.4% for R, re‐
spectively). Even for the shortest forecasting horizons, t + 3

t+3; t+6; t+12; t+24; t+36

ΔM
AR

E 
(%
)

10

12

14

16

18

20

22

t+3 t+6 t+12 t+24 t+36
Forecasting horizon

Fig. 7. Stability of relative error SDV in forecasting horizon.
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0.21
0.24
0.27
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0.36
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t+3 t+6 t+12 t+24 t+36

M
AR
E

t+3; t+6; t+12; t+24; t+36
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Fig. 4. MARE results in Case A.

t+3 t+6 t+12 t+24 t+36
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Forecasting horizon

0.65

0.71

0.77

0.83

0.89

0.95

R

Fig. 5. R results in Case A.
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t+3; t+6; t+12; t+24; t+36
Forecasting horizon

0.18
0.23
0.28
0.33
0.38
0.43
0.48

M
AR
E

Fig. 6. MARE variation of different forecasting periods: case of a forecast‐
ing horizon t + 24.
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and t + 6, the maximum improvements in the MARE metric
are significant (3% and 4.9%, respectively).

Continuing with the specific example proposed in the anal‐
ysis of results for Case A (using models t + 12 and t + 24),
Fig. 10 shows the additional improvements in performance
that can be obtained through the incorporation in the input
layer of data from the second WS (Case B).

Points A and B represent the error obtained when using a
fixed n of 12 and only data from the reference WS of the
wind farm. Points A1 and B1 represent the improvements ob‐
tained in the error in Case A when n is increased to 24.
Points A2 and B2 represent the additional improvements ob‐
tained in the error in Case B when the data from the second
WS are incorporated in the input layer of the ANN. For the
two specific examples, the overall improvements obtained
by combining Cases A and B equal to 8.78% and 6.04%, re‐

spectively.

V. CONCLUSION

A series of conclusions can be drawn from the results of
this study with respect to possible improvements in the per‐
formance of ANN models for the short-term forecasting of
wind power output.

The performance of the new ANN models generated for
each forecasting horizon is improved with the increase in the
number of prior 1-h periods prior to the forecasting hour,
which is chosen for the incorporation of the input layer pa‐
rameters. For the forecasting horizons t + 12, t + 24 and
t + 36, the maximum improvements obtained for MARE are
13.3%, 11.2% and 10%, respectively; and for R, the corre‐
sponding improvements are 7.9%, 8.9% and 9.2%, respec‐
tively.

The stability of the mean relative error is also studied for
the different forecasting periods and for each forecasting ho‐
rizon m. As n increases, the stability of the error in the fore‐
casting is significantly improved for all forecasting horizons.

Additionally, in all the new models, the incorporation in
the input layer of ANN of meteorological data from a sec‐
ond WS also helps improve the performance of the tradition‐
al models with data from the reference station of the wind
farm. In general, the degree of improvement in model perfor‐
mance increases with m, attaining improvements in MARE
and R of up to 7.5% and 5.4%, respectively.
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