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Abstract——Newly proposed power system control methodolo‐
gies combine economic dispatch (ED) and automatic generation
control (AGC) to achieve the steady-state cost-optimal solution
under stochastic operation conditions. However, a real power
system is subjected to continuous demand disturbance and sys‐
tem constraints due to the input saturation, communication de‐
lays and unmeasurable feed-forward load disturbances. There‐
fore, optimizing the dynamic response under practical condi‐
tions is equally important. This paper proposes a state con‐
strained distributed model predictive control (SCDMPC)
scheme for the optimal frequency regulation of an interconnect‐
ed power system under actual operation conditions, which exist
due to the governor saturation, generation rate constraints
(GRCs), communication delays, and unmeasured feed-forward
load disturbances. In addition, it proposes an algorithm to han‐
dle the solution infeasibility within the SCDMPC scheme, when
the input and state constraints are conflicting. The proposed
SCDMPC scheme is then tested with numerical studies on a
three-area interconnected network. The results show that the
proposed scheme gives better control and cost performance for
both steady state and dynamic state in comparison to the tradi‐
tional distributed model predictive control (MPC) schemes.

Index Terms——Automatic generation control, constraints, dis‐
tributed control, frequency regulation, model predictive control
(MPC), tie-lines.

I. INTRODUCTION

THE increasing deregulation [1], [2] and penetration of
the renewable energy sources (RESs) into the electricity

grid leads to the stochastic operation conditions with non-ze‐
ro mean demand disturbances [3]-[5], which potentially com‐
promise the economic and control performance of the eco‐
nomic dispatch (ED) and automatic generation control
(AGC) [6]. The new methods to optimize the operation cost
under stochastic conditions are proposed in [7]-[9]. Howev‐
er, these methods do not explicitly consider the governor sat‐
uration and generation rate constraints (GRCs) within the

control formulation and only optimize the steady-state solu‐
tion of the controller. This has motivated some researchers
to explore the dynamic model predictive control (MPC)
methodology for AGC as this technique enables an optimiza‐
tion criteria and the broad range of constraints to be incorpo‐
rated into the control response [10]. Nevertheless, the MPC-
based AGC schemes proposed so far have only focussed on
control performance and are not designed to achieve the best
cost performance at system level. In this paper, therefore,
the control and economic objectives are combined in a new
distributed MPC (DMPC) formulation with state constraints,
which achieves ED along with AGC under real-time opera‐
tion conditions.

The existing MPC-based approaches for power system
AGC vary among their implementations and control strate‐
gies. For example, the traditional MPC schemes in the cen‐
tralized as well as distributed implementations for AGC regu‐
late an area control error (ACE) [11], which controls both
the tie-line flow and frequency state deviation to be 0 [5].
The centralized implementations in [12] and [13] use MPC
in a supervisory mode and suggest optimal set points to the
local proportional-integral (PI) controllers. The benefit of a
supervisory scheme is a continuous control in times of com‐
munication failure as local PI controllers can continue to
control ACE. Centralized MPC in [14] replaces the tradition‐
al PI control and is applicable only to a small size system
due to the high computation needs. To tackle the drawback
of high communication and computational requirements of
centralized MPC implementations for a large-size power sys‐
tem, DMPC formulations are suggested [15]-[18]. A compre‐
hensive summary of various distributed implementations of
MPC for AGC can be found in [5]. A new hierarchical MPC
scheme for smart grid is proposed in [19] to include the new
type of resources in the control services, but it does not con‐
sider the contribution from the conventional turbine-gover‐
nor for frequency control. However, governors play a major
role in the frequency regulation through AGC in current sys‐
tems, so it is necessary to pay attention to their response.
Nevertheless, all the MPC strategies discussed above im‐
prove the dynamic response and local area control cost as
the control variable is the ACE. In an ACE-based MPC
scheme, the controller converges to a local optima where a
traditional PI-based AGC will also converge. Thus, a better
set point at the steady state from the point of view of the
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ED is not obtained. In addition, due to the ACE approach,
the tie-line flow values stay at their scheduled values and a
biased control is possible in times of large disturbances. Fur‐
thermore, the ability of self-smoothing wind fluctuations is
lost [20]. A cost-optimal AGC scheme will be one which
can combine the objective of ED and AGC which requires
the ability to allow the tie-line flow to vary during the AGC
cycle. A state constrained DMPC (SCDMPC) scheme is in‐
troduced in [21] to constrain the tie-line flow states while
regulating frequency state unlike traditional AGC scheme
and achieve an ED at system level. However, the control
law derived in SCDMPC assumes that the communication
between the distributed controllers and wide area control
(WAC) is instantaneous and demand disturbances are too
small to cause the input saturation. From a practical point of
view, since the distributed controllers solve simultaneously,
instantaneous communication is not possible. Further, in a
deregulated market with more flexible communication net‐
works [22], a communication delay is much more possible.
Such circumstance means that the information of neighbor‐
ing states cannot be obtained without a time lag. This also
means that the load disturbances cannot be calculated by the
method proposed in [21]. When the demand disturbance is
large, the input constraints on governor saturation and GRCs
become active. And due to the presence of constraints on tie-
line states, SCDMPC optimizer can encounter infeasibility.
This paper, therefore, addresses the above limitations to
achieve a practical implementation of SCDMPC in a WAC
framework.

The contributions of the paper are as follows: ① a shifted
prediction methodology is proposed for handling communica‐
tion delays between WAC and local controllers so that the
full system state predictions can be made under real-time
conditions; ② a functional observer is designed to estimate
the feed-forward demand disturbance in presence of commu‐
nication delay, which is required to correct state estimation
in local controllers; ③ since the SCDMPC optimization
problem has input as well as state constraints, conflicting
constraint scenario can occur in times of large disturbance.
An infeasibility solving algorithm is designed in such a way
that the computational burden does not increase and a solu‐
tion can be obtained in the current sampling time.

It has been shown in the numerical studies that the new
SCDMPC methodology reduces the regulating reserve re‐
quirement for balancing services while maintaining all the
operation constraints.

II. A REVIEW OF SCDMPC FOR AGC

The SCDMPC scheme proposed in [21] uses a decom‐
posed state space model for the distributed controllers where
each decomposed model is a full system state model. The
full system state decomposed model is derived from the cen‐
tralized state space model of the interconnected power sys‐
tem, given by:

Ẋ =Ac X +BcU +Bd
c d (1)

where Ac is the state matrix for centralized system; Bc is the
input matrix for centralized system; and Bd

c is the distur‐

bance matrix for centralized system. To build the mathemati‐
cal model, a generic directed ring interconnection is used
and the state X is defined as:
X =
é

ë
ê
ê     Df1 DP1 DPg1

Area 1states
DP12
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ù

û
ú
ú

T

(2)

The input U is a vector of control signals to the governors
in n control areas given by:

U =[u1 u2  un ]T (3)

The vector d represents unmeasured feed-forward load dis‐
turbances and d =[DP L

1 DP L
2 DP L

n ]T, where ΔP L
n is the un‐

measured feed-forward disturbance in nth control area.
The aggregate matrices Ac, Bc and Bd

c are given below:
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0
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(7)

B ii = [ ]0 0 1/Tgi 0
T

(8)

Bd
ii = [1/H i 0 0 0 ]T

(9)

where i = 1, 2,…, n; H i is the inertia constant; D i is the
damping constant; T i is the time constant of the turbine; R i

is the primary droop gain; Tgi is the time constant of gover‐
nor; and B ij is the synchronizing coefficient between control
areas i and j.

An1 =
é
ë
ê

ù
û
ú

03´ 1 03´ 3

-Bn1 01´ 3

(10)

A ij =
é
ë
ê

ù
û
ú

03´ 3 03´ 1

-B ij 01´ 3

i = 1,2,…,n- 1, j = i + 1 (11)

A1n =
é
ë
ê
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û
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01´ 3 1/H1

03´ 3 03´ 1

(12)

A ji =
é
ë
ê

ù
û
ú

03´ 3 1/H j

01´ 3 0
j = 23…n i = j - 1 (13)
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Considering only the frequency as the output variable, the
aggregate output vector Y is given by:

Y =CX (14)

C =

é

ë

ê

ê
ê
êê
ê

ù

û

ú

ú
ú
úú
ú

C11 C12  C1n

C21 C22  C2n

  
Cn1 Cn2  Cnn

(15)

C ii = [ ]1 0 0 0 (16)

C ij = [ ]0 0 0 0 (17)

where i = 1, 2, ..., n, j⩾1, j ≠ i.
The decomposed model for each area is obtained by de‐

composing the input vector U in (1) into the local input u i

and other area input uc
i while keeping the local ith model

state X i same as that of the centralized system, i.e., X i =X =
[x c

1 x c
i - 1x l

i x c
i + 1x c

n]T, where x l
i is the vector of locally

measurable states and X c
i =[x c

1 x c
i - 1x c

i + 1x c
n]T is the

vector of all the states in rest of the areas. The decomposed
model is then given by:

Ẋ i =
Aci

X i

System

states

+

Bci

ui

Local
input

+

Bc

ci
uc

i

External
input

+

Bd

ci
d

Load
disturbance

(18)

where Aci
=Ac; Bd

ci
= Bd

c; Bc
ci

is the matrix of columns of Bc

corresponding to uc
i ; and Bci

=[00B ii00]T; i =
12n.

The output is given by:
y i =C i X i (19)

where C i =[00Cii00]. A discrete state space model
of (18) and (19) is given by:

X i (k + 1)=A i X i (k)+B iui (k)+Bc
i u

c
i (k)+Bdd(k) (20)

y i (k)=C i X i (k) (21)

where k is the sampling inteval.
The output prediction equation over the prediction horizon

Np is given by [21]:
y i (k +Np|k)=F i X i (k|k)+Φ iui (k +Np|k)+Γ c

i uc
i (k|k)+Ψ id(k)

(22)

The computational matrices F iΦ iΓ c
i and Ψ i, which are

used to predict the free response of the outputs as given in
(22), are computed off-line [23].

The SCDMPC formulation consists of an objective func‐
tion (23), which minimizes the frequency deviation Df i = y i

from its reference value as well as the governor input u i.
Such an objective function is defined as:

J *
ϵ =min J(ui (k +Nc|k)ϵ i (k +Np|k))=
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2
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ö

ø

÷

÷
÷÷ (23)

where ϵ i (l + k|k)=Ref i - y i (l + k|k) and y i (l + k|k) satisfies
(22), l = 12Np; and Nc is the control horizon. The vector
ϵ i (k +Np|k) represents the predicted output error ϵ i =Ref i - y i

over the future k +Np samples, computed at the current sam‐
ple k. Ref i is the output set point vector of 0 s over Np sam‐
ples for area i. R̄ is the positive semi-definite input penalty
matrix and Q is the positive semi-definite error weighting
matrix, which are computed off-line in such a way that the
closed loop system is stable [10]. The sets of constraints con‐
sist of (24)-(26), which maintain the governor saturation lim‐
its, GRC and tie-line flow state within their operation limits,
respectively.

-u i
£u i (l + k|k)£ ū i l = 01Nc (24)

D-u i
£Du i (l + k|k)£Dū i l = 01Nc (25)

D-P ij
£DP ij (l + k|k)£DP̄ ij "j = 12N j

i (26)

where DP ij is the deviation in tie-line power flow between ar‐
eas i and j and DP ijÎX i with X i satisfying (20); N j

i is the
number of physically connected area i to j; -u i

and ū i are the

lower and upper limits on governor saturation; D-u i
and Dū i

are the lower and upper limits on GRC; and D-P ij
and DP̄ ij

are the lower and upper limits on ijth tie-line.

III. APPLICATION OF SCDMPC TO POWER NETWORK

An AGC scheme is often implemented using a WAC
scheme in a power network as shown in Fig. 1 [25]. In
WAC framework, individual control areas send information
of local states measured by sensors to WAC and also receive
a reference signal from WAC by means of a communication
network. This reference signal is a local ACE signal in tradi‐
tional AGC scheme.

When the proposed SCDMPC scheme is implemented in a
WAC framework, the communication network is responsible
to share the information of the full system states X c

i and in‐
put uc

i (k) to each of the ith control area at every control sam‐
ple. Using the shared information, the full system state vec‐
tor at k th sample is obtained by rearranging and appending
with the locally measured states x l

i as Xm (k)=
[x c

1 x c
i - 1x l

i x c
i + 1x c

i ]T inside every local controller. The
vector Xm (k) can then be used as X i in (22) to predict the
output over the prediction horizon. However, due to the com‐
munication network latency, the information of X c

i and uc
i

can only be available with a few sample delays, which is the
time lapsed between the local areas sending information to

WAC

Communication network layer with delay

Control signal 1 Control signal n
Area 1 states Area n states

actuators,
generators,

PMU, sensors

area 1:
Cyber-physicalCyber-physical

area n:
actuators,
generators,

PMU, sensors

�

Power system

Fig. 1. AGC scheme in a WAC framework.
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WAC and then WAC sending the full system states and in‐
put information back to local areas, which is shown in Fig.
2 in red arrows.

In Fig. 2, the coordination of information among distribut‐
ed controllers for computation at sample k is shown. It is de‐
picted that the state and input information of all areas is sent
to the WAC at every sample soon after the computation and
the controllers receive information of other area’s states and
inputs with a delay of τ samples at the start of computation.
Due to the delay of τ samples, the prediction of states be‐
comes erroneous if (22) is used without compensating for
the delay. Secondly, in an actual system, since the feed-for‐
ward disturbance d(k) is unknown, the true estimation using
(20) cannot be obtained and a compensation in state predic‐
tion is needed to account for it. Such limitations can disturb
the coordination among distributed controllers and negative‐
ly impact the convergence. Finally, from the controller point
of view, due to the presence of constraints on both the tie-
line flow coupling states and governor inputs, the infeasibili‐
ty can occur inside the SCDMPC solver under the large dis‐
turbances while solving (23) - (26). Again, convergence will
not be obtained.

IV. PROPOSED ENHANCEMENT FOR SCDMPC SCHEME

To ensure the system level convergence, it is important
for a distributed control scheme to have the proper coordina‐
tion among all the distributed controllers. Under the assump‐
tion of τ sample delay for all the controllers, Fig. 2 shows
the availability of system level information for any control‐
ler i at instant k. In order to account for this delay, a shifted
prediction model is first developed and then a disturbance es‐
timator is proposed to ensure the convergence. Finally, an in‐
feasibility solver algorithm is proposed to address the limita‐
tions in the SCDMPC scheme discussed in Section III. The
main assumptions of the algorithm are:

1) The computation time is less than the sample time so

that all the distributed controllers solve optimization problem
simultaneously.

2) Same communication delay exists for all the control ar‐
eas. This assumption is made only to keep the description
simple.

3) The local states are measurable, and the system is ob‐
servable.

A. Shifted Prediction to Handle Communication Delay

In this section, a shifted prediction model to account for
the communication delay between WAC and local areas is
developed so that the prediction accuracy is maintained. A
model to account for communication delay is also proposed
in [26], however, it does not use full system state in the lo‐
cal models and neglects the role of feed-forward disturbanc‐
es in the prediction model.

Assume that each control area receives the control input
and state information from WAC with a delay of τ > 0 sam‐
ples and that the local states and inputs are available without
any delays. While neglecting the load disturbances and using
(20), a one-sample ahead state prediction from sample τ can
be given as:

X̂ i (k - τ + 1)=A i Xm (k - τ)+B iui (k - τ)+Bc
i u

c
i (k - τ) (27)

As the local input u i (k) is available for all the samples, a
local buffer of past input moving from sample k - τ to k - 1
is maintained in each of the control areas. However, the in‐
formation of uc

i is only available until time instant k - τ. As‐
suming uc

i (k - τ + ι)= uc
i (k - τ), "ι= 12τ - 1, (28) is iterat‐

ed over τ samples starting from the k - τ sample to estimate
the full system state X̂ i (k) at the current sample k as:

X̂ i (k - τ + ι+ 1)=A i X̂ i (k - τ + ι)+B iui (k - τ + 1)+Bc
i u

c
i (k - τ - 1)

(28)

The state estimation from (28) gives the predicted state
value while correcting for the communication delay. Howev‐
er, the state estimation from (28) will have the error from
the true state value, due to the unavailability of the feed-for‐
ward disturbances and the control signals uc

i (k - τ + 1), ...,
uc

i (k - 1). In order to account for these, a disturbance estima‐
tor is proposed in the next section.

B. Disturbance Estimation

In Section III-A, it has been explained that when the feed-
forward disturbance d(k) is unknown in (20), (22) cannot be
used to predict accurate states. Therefore, it is modified as
(29) to obtain the estimated values of states without feed-for‐
ward disturbances.

X̂ i (k + 1)=A i X̂ i (k)+B iui (k)+Bc
i u

c
i (k) (29)

Consider that Coi
is the output matrix corresponding to the

locally measurable states of area i. The output is then de‐
fined as:

y i (k)=Coi
X i (k) (30)

Assuming that d(k) is a signal representing the load distur‐
bance, measurement noise and model uncertainties and satisfies:

d(k + 1)= d(k) (31)

Then by using (31) and (20), the following augmented
model for the disturbance estimator is obtained [27]:

Past

WAC

Computation
time

Control
area

Computation delay

Sample

Future

n

i

1

�
�

�k�τ

uc
1(k�τ),
Xc

1(k�τ)

uc
i (k�τ),
X c

i (k�τ)

uc
n(k�τ),
X c

n(k�τ) un(k),
Xn(k)

ui(k),
Xi(k)

u1(k),
X1(k)

k�1 k+1k

Fig. 2. SCDMPC coordination in WAC framework.
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{z(k + 1)=Ao z(k)+Boui (k)+Bc
ou

c
i (k)

y(k)=Co z(k)
(32)
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Ao =
é
ë
ê

ù
û
ú

A i Bd

O1 I

Bo = [ ]B i O
T

Bc
o = [ ]Bc

i O
T

Co = [ ]C i O

(33)

where i = 1, 2, ..., n ; and O1, O, I are the zero and identity
matrices of compatible dimensions, respectively. The pair of
matrices (AoCo) is observable under the assumption that
(A iC i) is observable. Now, a full observer is designed to es‐
timate the augmented state variable z(k) at the sample k. An
observer gain Kob is chosen such that the closed-loop observ‐
er error system (Ao -KobCo) is stable with a desired response
speed. Then, the augmented state variable z(k) is estimated
using the following equation:

z(k + 1)=Ao ẑ(k)+Boui (k)+Bc
ou

c
i (k)+Kob (y i (k)-Co ẑ(k))

(34)

With the estimated state variable ẑ(k), the estimated signal
d̂(k) is obtained which is then used in the output prediction
equation (22). The actual implementation of SCDMPC
scheme with the proposed shifted prediction methodology and
disturbance estimation in a WAC framework is shown in Fig. 3.

C. Infeasibility Handling by Constraint Softening

When the problem in (23)-(26) is feasible, the result u*
i (l +

k|k) is a vector of control moves, which satisfies the con‐
straints in (24) and (26) for the system model given by (20)
and (21). Out of the vector of control moves with size Nc,
only the first move is implemented. However, an MPC for‐
mulation with state and input constraints can encounter infea‐
sibility under large feed-forward disturbances. The tradition‐
al approach in MPC minimizes the constraint violations on
the soft and less prioritized state constraints to recover from

dynamic infeasibility [24]. Such a methodology is limited
when the problem size is of concern, even if the violations
are tolerable. This paper proposes a strategy, which works
by removing the tie-line state constraints but adds a refer‐
ence of 0 on them, until the system recovers from infeasibili‐
ty. Adding a set-point of 0 on tie-line flow deviations is in
agreement with the AGC problem, because the feasible
space of tie-line flow includes 0. Now, in order to set a refer‐
ence on the constrained states, which are tie-line flow devia‐
tion, the output signal is selected to be ACE instead of only
frequency by using the output matrix M, given in (35). This
approach does not increase the number of decision variables
and hence keeps the computation time to a minimal.

yACE
i (k)=M i X i (k)= β iDω i +DP ij -DPri (35)

M =

é

ë

ê

ê
ê
êê
ê

ù

û

ú

ú
ú
úú
ú

M11 M12  M1n

M21 M22  M2n

  
Mn1 Mn2  Mnn

(36)

M1n = [ ]0 0 0 -1 (37)

M ij = [0 0 0 -1 ] (38)

M ii = [ ]β i 0 0 1
T

(39)

where i = 23nj = i - 1; M i is the ith row of matrix M; β i

is a positive frequency bias for area i; and yACE
i is the ACE

for area i. Switching the system output from Dfi to ACEi con‐
verts the state constraint problem in (23)-(26) into the tradi‐
tional DMPC-based ACE regulation problem [15]-[18]. This
formulation does not have constraints on coupling variables
and is given in (40). The use of ACE as the control variable
is widely accepted in traditional AGC, as it regulates both
frequency and tie-line flow deviations to 0. Whenever any of
the optimization solvers in the distributed controllers encoun‐
ter infeasibility, an alarm is raised and the controller switch‐
es to the ACE-based formulation for the current sample con‐
trol decision computation as shown in Algorithm 1. Note
that this does not require any change in the controller struc‐
ture and the decision variables remain the same.
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where δ i (l + k|k)=Ref i - yACE
i (l + k|k), l = 12Np. The limits

on the governor inputs in (25) are defined by choosing the
tighter bound between the steam turbine and governor valve.
The vector δ i (k +Np|k) has calculated values of the predicted
error in yACE

i for next Np samples calculated at current sample
k. The above objective in (40) minimizes the ACE deviation
as well as the governor input.

WAC and communication

[X c
1 ( (k−τ) , uc

1 k−τ )]
[X c

n ( (k−τ) , uc
n k−τ )]

[un(k), Xn(k)][ul(k), Xl(k)]

d̂(k) d̂(k)

X̂1(k) X̂n(k)

u1(k) un(k)
Area 1 generator Area n generator

�

Shifted prediction Shifted prediction

Estimate
disturbance

Predict
Y1(k+Np |k)

Predict
Yn(k+Np |k)

Solve
SCDMPC 1

Estimate
disturbance

Solve
SCDPMC n

Fig. 3. SCDMPC implementation using WAC.
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D. SCDMPC Algorithm

The computation steps of the SCDMPC scheme are given
in Algorithm 1, which comprise an initialization part and a
computation part. The computation part consists of a shifted
prediction model to accommodate communication delay, a
disturbance estimator, an output prediction block, an optimiz‐
er to solve the SCDMPC problem and an infeasibility solver.
The interaction with WAC happens during the steps of shar‐
ing and gathering information.

V. NUMERICAL STUDIES

A three-area power network as shown in Fig. 4 is used for
the numerical studies with a sampling time of 0.2 s.

The system parameters are given in Table AI [18] and sim‐
ulation scenarios are described below:

1) Scenario 1 has disturbance patterns as shown in Fig. 5(a),
which are designed to showcase the control capability of
self-smoothing, optimization and bias free response of the
SCDMPC formulation in presence of communication delay
of 2 time samples and infeasibility.

2) Scenario 2 considers more realistic disturbances that
arise with the integration of RESs. The wind speed fluctua‐

tion data is taken from [31] and a DFIG dynamic model is
simulated to get the wind output fluctuations.

The dynamics of each area is modeled by (20) and (21),
with the estimator in (34). The model data is given in Table
AI. The performance of the proposed SCDMPC methodolo‐
gy in (23) - (26) is compared with the traditional DMPC
scheme given in (40). To solve the quadratic optimization
problem, the Hildreth programming in [29] is used.

VI. RESULTS DISCUSSION

A. Scenario 1

The results for Scenario 1 are shown in Figs. 5-7. The sys‐
tem is in steady state until t = 10 s, when the disturbance oc‐
curs after which it undergoes a transient. From Fig. 6(a), it
is evident that in both SCDMPC and DMPC schemes, it
takes the approximately same time for the transients to set‐
tle. However, at the steady state, the frequency response is
bias-free in SCDMPC scheme but not in DMPC scheme.
The biased response in DMPC scheme occurs because the
load loss in Area 2 is more than the lower operation limit
for the steam turbine in the area, and hence the local control‐
ler cannot fully compensate for the load loss. However, in
the case of SCDMPC scheme, the interconnected areas share
power optimally via tie-lines as shown in Fig. 6(b) - (d),
where Area 2 exports power to Areas 1 and 3 as DP12 be‐
comes negative and DP23 becomes positive. This inter-area
exchange of power maintaining tie-line flow thermal limits
not only compensates the changes in the load but also mini‐
mizes the effort of individual control area as seen in the
plots of turbine power output in Fig. 5(b) - (d). The plots
clearly indicate that in all the control areas, the turbine pow‐
er output deviation is much smaller in SCDMPC scheme
compared with DMPC scheme, which follows local load dis‐
turbance. The total control action in three areas in both
schemes is only -0.2 p.u., but individual control actions in

Algorithm 1: SCDMPC algorithm with infeasibility solver

Initialize WAC and individual controllers, i.e., Xm (k), Xi (k), ui (k),
uc

i (k), d(k)
Initialize a vector of size τ for uc

i and ui in each area i for buffer
for k = 1 to simulation time do

for i= 1 to n do
gather Xm (k - τ), uc

i (k - τ) from WAC
measure x l

i (k)
store buffer [ui (k - τ)ui (k - 1)]

end for
for i= 1 to n do

solve (27) and (28)
solve (34) to obtain d̂k

predict yi by solving (22)
solve problem in (23)-(26)
if infeasible then

solve problem in (40)
end if
update control move u*

i (k)
i¬ i+ 1

end for
for i= 1 to n do

implement u*
i (k) in subsystem i

measure x l
i (k)

share u*
i (k) and x l

i (k) with WAC
end for
k ¬ k + 1

end for

Area 2Area 1

Area 3

Tie-line 12

Tie-line 31

Tie-line 23

Fig. 4. Three-area interconnected power system.

0 450

8 10 12 14

900

(a)

0 450 900

(b)

-0.4

-0.2

0

0.2

Lo
ad

 d
ev

ia
tio

n 
(p

.u
.)

Area 1; Area 2; Area 3

DMPC; SCDMPC

DMPC; SCDMPC

DMPC; SCDMPC

-0.10

-0.05

0

0.05

0.10

ΔP
m

1 (
p.

u.
)

ΔP
m

2 (
p.

u.
)

ΔP
m

3 (
p.

u.
)

0 450 900
Time (s)

(c)

-0.4

-0.3

-0.2

-0.1

0

0 450 900
Time (s)

Time (s) Time (s)

(d)

-0.10

-0.05

0

0.05

0.15

0.10

-0.4
-0.2

0.2
0

Fig. 5. Disturbance and deviation in turbine power of Scenario 1. (a) Dis‐
turbance. (b)-(d) Deviation in turbine power.

459



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 3, May 2020

SCDMPC scheme are minimum. This is also shown in Fig. 7
(a)-(c). During this simulation, the SCDMPC scheme encoun‐
ters infeasibility during the initial transients after t = 10 s,
which leads to an increased cost function momentarily as
shown in Fig. 7(d). However, it recovers successfully by
switching to the formulation in (40) and the tie-line flows
settle within their bounds after 12 s.

To summarize, in the SCDMPC scheme with shifted pre‐
diction, disturbance estimations and infeasibility solver, the
control effort in each area does not have to match the local
disturbances, rather the total sum of load disturbances in all
the areas has to be matched with the total generation change.
The potential of this methodology in smoothing out the dis‐

turbance by sharing power in real time among the areas is
thus confirmed. The total cost function in all areas for a sim‐
ulation time of 900 s is given in Fig. 7(d). The total cost
function for 900 samples in SCDMPC formulation based on
(23) was only 4.1% of the cost function of the DMPC scheme
using ACE regulation (40) as shown in Fig. 7(d). The computa‐
tion time and infeasibility flags are shown in Fig. 8.

B. Scenario 2

The results for Scenario 2 are given in Figs. 9-11.

As expected with the RES generation fluctuations, the
SCDMPC methodology regulates the frequency deviation as
shown in Fig. 10(a) with much less fluctuations in control ef‐
forts as shown in Fig. 11(a)-(c). This leads to a smaller cost
function as shown in Fig. 11(d). The total cost function for
900 samples in the SCDMPC case is only about 6% of the
total cost function in the existing ACE-regulation-based
DMPC methodology. This has been possible due to real-time
power sharing between areas as shown in the tie-line flow plots
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as shown in Fig. 10(b)-(d). Since the tie-lines never cross the
bounds, there is no infeasibility encountered in this scenario.

Based on the theoretical discussions and the above results,
a qualitative comparison of SCDMPC with DMPC schemes
is given in Table I.

VII. CONCLUSION

An optimal AGC strategy based on SCDMPC scheme is
investigated for the application in an interconnected power
network under the real-time operation conditions of commu‐
nication delays and large demand disturbances. A shifted pre‐
diction methodology is developed to handle the communica‐
tion delay and a disturbance estimator is proposed to ac‐
count for the unmeasured feed-forward disturbances in the
state estimation. An infeasibility solving algorithm is also
proposed to handle the large disturbances, which leads to
conflicting constraint situations. Two numerical studies are
conducted to quantify the theoretical claims, which show
that the control cost in SCDMPC is only 4% in Scenario 1
and 5.2% in Scenario 2 of the cost of traditional MPC
scheme. The numerical studies demonstrate that the control
scheme can recover successfully from infeasible scenarios
when conflicting constraints occur. Overall, the proposed
methodology shows the improved control, thermal, and cost
performance with an added benefit of self-smoothing of dis‐
turbances across geographically distributed area. Such a
methodology can pave the way for the integration of more
RESs into the power network without increasing the need
for regulation reserves.

APPENDIX A

APPENDIX B

In Theorem 1, the optimality of SCDMPC over the tradi‐
tional DMPC is proven.

Theorem 1 If u i and u∗
i are respectively the converged

solution of (23)-(26) at the steady state, then J *
ϵ £ J *

δ .
Proof Since u∗

i is the optimal solution of (24) - (26), it

TABLE AI
GENERATION AND SCDMPC PARAMETERS

Parameter

Number of areas n

Prediction horizon Np

Control horizon Nc

Droop characteristic Ri

Constraint in Area 1

Total damping Di

Constraint in Area 3

Turbine time constant Ti

Tie-line power flow limit [-P ijP̄ij]

Total inertia Hi

Input constraint [-u i ūi]

GRC constraint [D-u iDūi]

Frequency bias βi

Output weight Qi

Governor time constant TGi

Input penalty R̄

Tie-line gain Bij

Constraint in Area 2

Value

3

60

50

[0.030.070.05]

[DP12DP31]

[2.002.752.40]

[DP31DP23]

[501030]

[-0.20.2]

[3.504.003.75]

[-0.30.3]

[-0.020.02]

[333]

[100100100]

[402532]

[0.050.050.05]

[7.547.547.54]

[DP23DP12]
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Fig. 11. Input moves and cost function in Scenario 2. (a)-(c) Input moves
in Areas 1, 2 and 3. (d) Cost function over 900 s.

SCDMPC

0 450

0 100 200

900
-0.04
-0.03
-0.02
-0.01

0
0.01

-0.04
-0.03
-0.02
-0.01

0
0.01

-0.2

-0.1

0

0.1

0.2

(a)

Δf
 in

 3
 a

re
as

 (H
z)

0 450 900

(b)

ΔP
12

 (p
.u

.)

Δ P
23

 (p
.u

.)

-0.2

-0.1

0

0.1

0.2

-0.2

-0.1

0

0.1

0.2

ΔP
31

 (p
.u

.)

Up limit

Low limit

Up limit

Low limit

Up limit

Low limit

Time (s) Time (s)

0 450 900

(c)

0 450 900

(d)
Time (s) Time (s)

DMPC

DMPC

SCDMPC

SCDMPC

DMPC

Area 1
Area 2
Area 3

Fig. 10. Frequency and deviation in Scenario 2. (a) Frequency in Areas 1,
2 and 3. (b)-(d) Deviation in tie-line power flow.

TABLE I
GENERATION AND SCDMPC PARAMETERS

Parameter

Settling time in Scenario 1 (s)

Steady-state error in Scenario
1 (Hz)

Control effort in Scenario 1/
Scenario 2

Network utilization

SCDMPC

100

0

4.1%/6%

Optimal within thermal
limits

DMPC

110

0.004

100%/100%

Sub-optimal
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will satisfy both Δfi = 0, ∀i = 1,2,…,n and ΔP *
ij = 0, ∀ij:

aij = 1. Hence, u∗
i is also a feasible but may not be the opti‐

mal solution of (23) - (26) as the region spanned by the
bounds on tie-line, Δ-P ij

and ΔP̄ ij include 0. Now if u∗
i is the

optimal solution of (23)-(26), then it must satisfy:
Jϵ (u*

i (k + Nc|k ),ϵ i (k + Np|k ) ) = J *
ϵ (B1)

In case it does not satisfy (B1), by virue of the optimiza‐
tion it must respect (B2) because J *

ϵ is the optimal.
Jϵ (u*

i (k + Nc|k),ϵ i (k + Np|k)) ³ J *
ϵ (B2)

With (B1) and (B2), Theorem 1 is proved.
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