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Abstract——Accurate topology estimation is crucial for effective‐
ly operating modern distribution networks. Line outages in a
distribution network change the network topology by discon‐
necting some parts of the network from the main grid. In this
paper, an outage detection (or topology estimation) algorithm
for radial distribution networks is presented. The algorithm uti‐
lizes noisy power flow measurements collected from a subset of
lines in the network, and statistical information characterizing
errors in forecasting load demands. Additionally, a sensor place‐
ment scheme is presented. The sensor placement provides criti‐
cal sensing for the outage detection algorithm so that any num‐
ber of possible outages in the network can be detected. The per‐
formance of the proposed outage detection algorithm using the
proposed sensor placement is demonstrated through several nu‐
merical results on the IEEE 123-node test feeder.

Index Terms——Outage detection, distribution networks, maxi‐
mum likelihood (ML) detection, sensor placement.

I. INTRODUCTION

AS novel controls, applications, and services continue to
be integrated into distribution networks, the demand for

accurate and timely estimates of the network topology is be‐
coming increasingly critical [1]. Maintaining the situational
awareness in distribution networks is imperative for the ef‐
fectiveness of many tasks in distribution networks. For exam‐
ple, the correct estimation of network topology is crucial for
efficiently and reliably dispatching distributed energy re‐
sources [2], sectioning into microgrids [3], and providing de‐

mand response [4] capabilities. Further, many techniques for
distribution system state estimation (DSSE) [5] - [7] and
many application functions of the distribution management
system (DMS) require the knowledge of the correct network
topology.

Outages change the topology of a distribution network.
Line outages cause protective devices to automatically iso‐
late some part of the network and form an island. The island
formed due to the isolation might experience a loss of power
supply due to the disconnection from the main grid. Alterna‐
tively, it is possible that the island remains energized by re‐
ceiving power from a distributed generation (DG) unit [8],
[9] or by a network re-configuration [10]. Whether the is‐
land is energized or not, the detection of outages that causes
the isolation (outage detection) and the detection of the cur‐
rent topology of the network (topology estimation) are im‐
portant tasks. Assuming that the topology of the outage free
network is known, the detection of the outages that causes a
topology change enables the construction of the current to‐
pology of the network. Hence, outage detection and topolo‐
gy estimation are equivalent tasks.

Due to several engineering and practical concerns, distri‐
bution networks are predominately operated as radial (tree)
graphs in which power flows in one direction away from the
root node of the tree. Typically, the substation of distribution
network is considered as the root node of the tree. This radi‐
al nature of distribution networks has traditionally led them
to have fewer installed sensors and monitoring devices com‐
pared to transmission networks. Transmission networks have
mesh topologies and extensive monitoring. As a conse‐
quence of having fewer sensors, distribution networks have
been historically less observable than transmission networks.
Due to these differences, topology estimation and outage de‐
tection techniques devised for transmission networks [11] -
[14] have limited applicability in distribution networks.
Hence, there is a need for methods and techniques designed
specifically for the distribution networks.

Traditionally, topology estimation in distribution networks
have relied heavily on information obtained through phone
calls from customers or expert systems [15] to identify and
locate outages in the network. Knowledge-based methods uti‐
lizing different types of information from advanced metering
infrastructure (AMI) and supervisory control and data acqui‐
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sition (SCADA) systems have also been proposed [16]. How‐
ever, these methods are limited in the number of simultane‐
ous outages that they are able to detect.

Fortunately, recent advances in the development of mea‐
surement units and their increased adoption in distribution
networks provide new data streams used for detecting multi‐
ple topology changes. In fact, some new phasor measure‐
ment units (PMUs) are being designed specifically for distri‐
bution networks with promising results [17], [18]. Also,
some new topology estimation methods assuming the wide‐
spread adoption of these devices are being proposed. Using
time series measurements from PMUs, a topology identifica‐
tion method is proposed in [19]. A topology detection meth‐
od using optimal matching loop power is proposed in [20].
The network topology is identified using smart meter data in
[21]. The mixed-integer quadratic programming is used for
topology identification in [23]. A topology identification al‐
gorithm using voltage correlation data is proposed in [20].
The research in [24], [25] relying on a limited number of
line flow sensors is more relevant to the work presented in
this paper. In their work, the authors show that the outage
detection problem over a full distribution network can be de‐
coupled into smaller detection problems within the sub-trees
of the same network. They also propose a mathematical
framework which provides analytical metrics that describe
the performance of their outage detection scheme.

In this paper, a novel outage detection (or topology estima‐
tion) algorithm and a novel sensor placement algorithm are
presented for radial distribution networks. The sensor place‐
ment scheme provides critical sensing for the outage detec‐
tion scheme. Reference [25] presents that power flow mea‐
surements are superior to voltage measurements when using
only a small number of measurements for detecting outages
in a distribution network. This is because voltage differences
between nodes are small in a distribution network, and the
deviations in power flows caused by outages are larger than
those of voltages. Hence, in this work, sensors measuring
power flows are considered. We assume that a sensor at a
node measures the power flow (both the real power flow
and the reactive power flow) along every line connecting to
that node. Using noisy power flow measurements from these
sensors and nodal load forecasts, a novel outage detection al‐
gorithm is proposed. Additionally, a sensor placement algo‐
rithm based on a deterministic treatment of the load fore‐
casts is proposed. Numerical results are presented to demon‐
strate the performance of the outage detection algorithm for
the IEEE 123-node test feeder with the proposed sensor
placement.

The remainder of this paper is organized as follows. In
Section II, the system model is presented followed by the no‐
tations. In Section III, the outage detection problem is de‐
scribed. Section IV presents the novel sensor placement algo‐
rithm. In Section V, the novel outage detection approach is
proposed. Section VI presents numerical results. The numeri‐
cal results employ the proposed sensor placement scheme
along with the proposed outage detection scheme to detect
randomly generated outages in the IEEE 123-node test feed‐
er. Finally, conclusions are drawn in Section VII.

II. SYSTEM DESCRIPTION AND NOTATION

A. Topology of a Distribution Network

A distribution network with a radial (tree) structure is con‐
sidered, where the power is supplied to the feeder at the root
node of the tree. The nominal (outage free) distribution net‐
work with N + 1 nodes is modeled as a radial tree graph
T full = (VE). V ={01N} represents the set of nodes in
the network. The set E ={e1 e2 eN} consists of all the edg‐
es in the network, where en  (mn) represents the edge con‐
necting node n to its parent node m. Without loss of generali‐
ty (WLOG), node 0 is considered as the point of common
coupling (PCC), i. e., the substation or the point where the
distribution network under analysis is connected to the main
grid. Hence, node 0 is the root node of the tree T full. Regard‐
ing the root node, the following assumptions are made.

1) Assumption 1: the root node 0 is the only power source
in the distribution network.

2) Assumption 2: the line connecting the root node to the
main grid is directly monitored by the operator since it car‐
ries the power supply required for the entire distribution net‐
work. Hence, in this work, sensor placement for this line is
not considered.

Figure 1 illustrates a simple tree with the above discussed
notations.

B. Load and Power Flow Models

Each node (except the root node) in the distribution net‐
work has a power consumption demand (load) that must be
supplied to it through an outage-free path connecting it to
the root node. However, there are some nodes that have no
power consumption demand, i.e., zero-injection nodes. Set ze‐
ro-injection nodes be Z. The real and reactive power con‐
sumption loads at a node iÎV\Z (nonzero-injection nodes)
are represented as d͂ P

i and d͂ Q
i , respectively. We apply the lin‐

earized DistFlow equations for the power flow model [26].
In linearized DistFlow equations, the current on a line of the
distribution network is approximate to zero since it is small
in practice. Under this approximation, the real and reactive
power losses on a line can be regarded as zero. The root
node is the sole power supply in the network (Assumption
1). Using the linearized DistFlow equations, the real and re‐
active power flows on a line can be represented as:

d͂ P (en)= ∑
iÎD(n; T true)

d͂ P
i (1)

d͂ Q (en)= ∑
iÎD(n; T true)

d͂ Q
i (2)

where d͂ P (en) and d͂ Q (en) are the real and reactive power

e1
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e4e3

0

1

2 5

3 4

Fig. 1. An example tree.
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flows on line en, respectively; T true is the unknown true (actu‐
al) network topology; and D(n; T true) is a function returning a
set of all nonzero-injection nodes iÎV\Z that are down‐
stream from node n in T true. The objective of the topology es‐
timation is to estimate T true. In an outage free scenario, T true

is equal to T full.
The forecasts (or expected values) for real and reactive

loads for node i are represented by d P
i and d Q

i with forecast
errors cP

i = d͂ P
i - d P

i and cQ
i = d͂ Q

i - d Q
i , respectively. Regarding

the forecast errors, we make the following assumption.
Assumption 3: forecast errors are mutually independent

normal random variables, i.e., cP
i N(0 σ 2) and cQ

i N(0 σ 2),
where σ 2 is the forecast error variance [24], [25].

Under Assumption 3, the true real and reactive loads at
node i can be modeled as random variables distributed as
d͂ P

i N(d P
i σ2) and d͂ Q

i N(d Q
i σ2), respectively.

Note that for simplicity in this paper, it is assumed that
the real and reactive load forecasts for every node have the
same error variance σ 2. However, even if the error variances
are different for real and reactive loads at various nodes, the
proposed sensor placement and outage detection algorithms
shall remain valid and will still work.

C. Measurement Model

In this work, sensors are placed at a subset of nodes in a
distribution network. We consider that a sensor at a node
measures both the real and reactive power flows along all
lines connecting to that node. Examples of such sensors are
micro-PMUs [17] and linewatch L sensors [27]. Sensor
placement is represented as a set of nodes P where P⊂V.
Also, E(P) denotes the set of lines whose real and reactive
power flows are measured under placement P.

E(P)= { }|e eÌE (3)

where e is the incident on some vÎP.
The real and reactive power flow measurements made by

the sensors are modeled as measurements that are free of
sensor noise. This is because sensors communicate their mea‐
surements in real time, whose errors (sensor noise) are negli‐
gible compared to the errors of load forecasts (cP

i and cQ
i )

that are based on non-real-time information [25].
In this work, outage detection is analyzed in two different

cases. In the first case (Case 1), only real power flow mea‐
surements are used for outage detection. In the second case
(Case 2), the real and reactive power flow measurements are
summed up and the sums are used for outage detection. Con‐
sidering both real and reactive power flow measurements for
outage detection (Case 2) results in better performance than
only considering real power flow measurements (Case 1).
The algorithms and discussions generalized in this paper can
be applied to both the cases. Hence, the following notations
are adopted. The load and the load forecast (or expected
load) at a node i are represented as d͂i and di, respectively. In
Case 1, since only real power flow measurements are used,
we have d͂i = d͂ P

i and di = d P
i . In Case 2, since both real and

reactive power flow measurements are used by summing
them up, we have d͂i = d͂ P

i + d͂ Q
i and di = d P

i + d Q
i . Hence, we

can simply represent the loads at all nodes iÎV\Z in the net‐
work by the vector d͂ and the load forecasts by the vector d.
Since the load forecast errors are mutually independent nor‐
mal random variables (Assumption 3), we can write
d͂ N(dΣ) with Σ = σ 2 I in Case 1 and Σ = 2σ 2 I in Case 2,
where I is an identity matrix with dimensions N - 1. Thus,
the measured power flow through line enÎE is given by:

yT true
(en)= ∑

iÎD(n; T true)

d͂i (4)

Based on Assumption 3 for the noise in the load forecasts,
a nonzero yT true

(en) will be normally distributed with a mean

value ȳT true
(en) (expected power flow) given by the right-hand

side of (4) with each nonzero d͂i replaced by di, and a vari‐
ance that equals the number of downstream nodes with non‐
zero forecast times σ 2 in Case 1, and 2σ 2 in Case 2.

D. Outage Model

Outages are modeled as any number of disconnected lines
in the network. The set of all edges in outage is represented
by F, where F ⊂E. Each outage breaks the network into two
parts. Hence, outages result in a forest ℱoutage = (VEf), where
Ef E\F is the set of lines excluding outage lines. Because
of T full, the error-free network is a single connected tree, and
every line outage will increase the number of trees in the for‐
est by one. For example, if |F|= k outages occur, the graph
describing the network with outages ℱoutage is a forest com‐
posed of k + 1 components, i.e., trees T 0,T 1,  T k.

Since the power is drawn solely from the root node, only
one of the trees in ℱoutage will be energized and it will be the
tree which contains the root node. WLOG, the energized tree
is denoted by T 0 since the numbering is arbitrary. T 0 may be
described as T 0 = (V0E0), where V0 ÌV and E0 ÌEf are the
set of nodes and the set of lines that remain energized by
the substation after the occurrence of all outages, respective‐
ly. As a result, all the lines not included in E0 will have zero
power flowing through them. All sensor measurements col‐
lected under any possible placement on these lines will be
equal to zero. Therefore, an outage on a line em that is the
downstream of another outage line en will have no effect on
the measurements collected in E0, since it is going to be dis‐
connected from the energized tree irrespective of whether it
is in outage or not. Therefore, we exclude the detection of
such downstream outages in our analysis. The following defi‐
nition highlights these type of outages and the reason for ex‐
cluding them.

Definition 1 (topologically undetectable outages): an out‐
age affecting a line ej  (i j)ÎE will have no effect on any
possible measurement under any possible sensor placement,
otherwise it will still be excluded from the grid-connected
part of the network. Such an outage carries no practical sig‐
nificance on the topology estimation problem. The measure‐
ment data obtained from sensors will be unable to distin‐
guish such outages, irrespective of the sensor placement.
Hence, these outages are called topologically undetectable
outages, and such outages are not considered in this work.
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III. OUTAGE DETECTION PROBLEM

In this section, the outage detection problem and the chal‐
lenges it poses are discussed. An optimal outage detector
must determine both the number of line outages and the
lines in outages. We consider outage detection using the
knowledge of T full (the outage-free network topology), nodal
load forecasts, and the sensor measurements Y =
[y(en1

), y(en2
),…, y(en|P|

)]. A possible detection method is to

employ a maximum likelihood (ML) detector that may be ex‐
pressed as:

F̂ Î arg max
F Î Ss (E)

Pr(Y|dF) (5)

where Ss (E) is the superset of E; and F̂ is chosen after enu‐
merating all elements of Ss (E). The size of Ss (E) is exponen‐
tial in |E| (the number of links in the network), which
makes it infeasible enumerating all the possible outage sce‐
narios for most distribution networks. Even after excluding
all topologically undetectable outages, it is shown in [25]
that the number of outage scenarios grows exponentially in
|E| for a worst-case distribution network. However, [25] pres‐
ents that the ML detection problem (5) for the entire net‐
work may be decoupled and solved over smaller disjoint sub-
trees in the network as long as each sub-tree is rooted at a
node whose parent edge, i. e., the edge that connects the
node to its parent node is monitored by a sensor. As a result,
only a few sensors measuring power flows along several
lines in the network can help solve (5) efficiently by decou‐
pling the full distribution network into smaller and more
manageable problems.

In addition to the exponential size of Ss (E), another prob‐
lem affecting the performance of outage detection is the am‐
biguity that might occur in the ML detector (5). Ambiguity
in ML detection occurs when the sensor locations are such
that multiple outage scenarios result in the same expected
flow along the measured lines. In most cases, careful place‐
ment of sensors in a network will enable us to make suffi‐
cient number of measurements that can help differentiate the
different outages causing ambiguities. One way is to place a
sensor closer to the line whose failure causes the ambiguity
of the detector. A simple illustrative example showing the ef‐
fect of sensor placement on the ability to identify and differ‐
entiate detectable outages is demonstrated in Fig. 2. The
blue nodes in Fig. 2 represent a node endowed with a sen‐
sor. The number next to each node in Fig. 2 represents the
load or demand of the node.

With the sensor at node 0 in Fig. 2(a), we are able to ob‐
serve the power flow only on line e1. Since line e1 must car‐
ry the entire power supply required for loads at nodes v1, v2

and v3, we expect the measured flow on line e1 (assuming
noise free sensor measurements) to be 50. However, line out‐
ages change the measured flow. Depending on the outage
scenario of the network, the measured flow could be any
member of the set C(e1)={0103050}. Since the demands
for nodes 2 and 3 are both 20, the outage of either line re‐
sults in a measured flow of 30 on e1 makes the distinction
between line outages of e2 and e3 impossible. However, plac‐
ing a sensor at node 1, as shown in Fig. 2(b), enables us to

distinguish the line outages of e2 and e3 since the sensor at
node 1 measures the power flows along e1, e2, and e3. If e2

is in outage, then the sensor measures zero flow on e2 and a
flow of 20 on e3. If e3 is in outage, the measurements are ex‐
actly opposite, thus providing us with enough measurements
to distinguish and detect. This is the fundamental logic that
we shall use in proposing the sensor placement technique.

Unfortunately, there are still some outage scenarios that re‐
sult in the ambiguity of the ML detector (5), which cannot
be resolved under any possible sensor placement. These out‐
age scenarios involve zero-injection nodes. Consider the tree
and sensor placement of Fig. 2(b) for example, and suppose
that node 1 is a zero-injection node with zero demand in‐
stead of 10. In this case, we will be unable to distinguish
the scenario where e1 is in outage and the scenario where
both e2 and e3 are in outage, even though the sensor mea‐
sures the flow along every line in the network. These types
of outages are referred to as “numerically indistinguishable”,
because it is not possible to distinguish them by any detector
under any sensor placement due to the numerical value of
the demand of the node. A group of such outages associated
with the same expected flow measurements is referred to as
a set of numerically indistinguishable outages. Throughout
this paper, we consider the occurrence of a outage from a
set of numerically indistinguishable outages as occurrences
of all outages in that set. Hence, we consider the detection
of an outage that is numerically indistinguishable as detec‐
tions of all outages from the set. We adopt this procedure be‐
cause we are unable to identify the exact outage from a set
of indistinguishable outages. In the next section, a novel sen‐
sor placement scheme is proposed, in which the sensor loca‐
tions are chosen such that numerically indistinguishable out‐
ages are the only indistinguishable outages in the network.

IV. SENSOR PLACEMENT

It is shown in [25] that the outage detection problem for
the complete distribution network tree can be decoupled into
local detection over disjoint sub-trees that are rooted at
nodes which have the power flow on their parent edge mea‐
sured by a sensor. Hence, the decoupling of the detection de‐
pends on the sensor placement since each disjoint sub-tree is
rooted at a node with a sensor. However, due to the decou‐
pling, the performance of the outage detection for the com‐
plete distribution network now depends on the performance
of local detection in each disjoint sub-tree. Hence, the sensor
placement in each disjoint sub-tree must guarantee that all to‐
pologically detectable outages can be identifed. To this end,
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(a) (b)

Fig. 2. Effect of sensor placement on the ability to distinguish outages. (a)
Outages in e2 and e3 are indistinguishable. (b) Outages in e2 and e3 are dis‐
tinguishable.

a novel sensor placement scheme is proposed. The following
definition formalizes the concept of identifiability.

Definition 2 (identifiable outages): an outage in line en is
identifiable under a given placement and noise-free nodal
load forecasts if the expected power flow along em is unique
with all topologically detectable outages involving line en

and any or none of the lines that are downstream from node
m along em. em is the first line endowed with a sensor along
the (directed) path from node n to the root node 0. The
uniqueness of the expected flow along em is allowed to be vi‐
olated only when numerically indistinguishable outages are
considered.

In our sensor placement scheme, sensors are placed at a
minimal set of nodes P such that the power flow measure‐
ments on the lines monitored by the sensors (E(P)) are suffi‐
cient to distinguish every outage scenario, and thereby mak‐
ing every outage scenario identifiable. Representing the to‐
pology of a distribution network by T, the proposed recur‐
sive sensor placement scheme is given in Algorithm 1 as the
recursive function Placement(×), which calls the following
functions.

1) Child(nT ): this function returns a set containing all
child nodes of node n in the network T.

2) UpFlow(ndT ): this function outputs a vector com‐
prised of all possible power flows along line en. We may cal‐
culate the elements of the vector using (4).

3) UpdateTopology(nT ): this function returns the net‐
work T after removing the line en and the entire sub-tree
rooted at node n from T.

4) Size(×): this function returns the size (or length) of the
set or vector provided to it as an input.

5) IsEmpty(x): this function returns a logical true (1) if
the vector x is empty; otherwise, it returns a logical
false (0) .

6) Unique(x): this function returns a logical true if all ele‐
ments of the vector x are unique; otherwise, it returns a logi‐
cal false otherwise.

7) CombineVects(x1x2): this function returns a vector con‐
structed from combining the vectors x1 and x2 as described
by the following Subroutine 1.

The sensor placement is obtained by calling the function
Placement(×) with the inputs set as the root node (n= 0), P
chosen as an empty set, T chosen as T full, and the vector d =
[d1d2dN]T constructed such that di is the expected load
for node iÎV\{0} with di = 0 when node i is a zero-injection
node. The function Placement(×) starts at the root node and
traverses the tree in a depth-first search manner. At each
depth, the algorithm constructs arrays of expected power
flows for the visited lines or edges. The full array of expect‐
ed power flows flow_array for a line en is constructed only
after visiting all child nodes of node n. Since every node in
a network except the leaf nodes has child nodes, the arrays
of expected power flows are constructed starting from the
leaf nodes of the tree. The constructed arrays continue to
grow as the algorithm backtracks from leaf nodes towards
the root node. The arrays consist of the complete set of all
possible expected flows on each line.

If any line en has repeated values of expected flows in its
array, then it means that two different outage scenarios in
the sub-tree rooted at node n result in the same flow mea‐
surement on line en. The only way to differentiate the simi‐
lar outage scenarios is to measure the power flow on line en
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a novel sensor placement scheme is proposed. The following
definition formalizes the concept of identifiability.

Definition 2 (identifiable outages): an outage in line en is
identifiable under a given placement and noise-free nodal
load forecasts if the expected power flow along em is unique
with all topologically detectable outages involving line en

and any or none of the lines that are downstream from node
m along em. em is the first line endowed with a sensor along
the (directed) path from node n to the root node 0. The
uniqueness of the expected flow along em is allowed to be vi‐
olated only when numerically indistinguishable outages are
considered.

In our sensor placement scheme, sensors are placed at a
minimal set of nodes P such that the power flow measure‐
ments on the lines monitored by the sensors (E(P)) are suffi‐
cient to distinguish every outage scenario, and thereby mak‐
ing every outage scenario identifiable. Representing the to‐
pology of a distribution network by T, the proposed recur‐
sive sensor placement scheme is given in Algorithm 1 as the
recursive function Placement(×), which calls the following
functions.

1) Child(nT ): this function returns a set containing all
child nodes of node n in the network T.

2) UpFlow(n dT ): this function outputs a vector com‐
prised of all possible power flows along line en. We may cal‐
culate the elements of the vector using (4).

3) UpdateTopology(nT ): this function returns the net‐
work T after removing the line en and the entire sub-tree
rooted at node n from T.

4) Size(×): this function returns the size (or length) of the
set or vector provided to it as an input.

5) IsEmpty(x): this function returns a logical true (1) if
the vector x is empty; otherwise, it returns a logical
false (0) .

6) Unique(x): this function returns a logical true if all ele‐
ments of the vector x are unique; otherwise, it returns a logi‐
cal false otherwise.

7) CombineVects(x1x2): this function returns a vector con‐
structed from combining the vectors x1 and x2 as described
by the following Subroutine 1.

The sensor placement is obtained by calling the function
Placement(×) with the inputs set as the root node (n= 0), P
chosen as an empty set, T chosen as T full, and the vector d =
[d1d2dN]T constructed such that di is the expected load
for node iÎV\{0} with di = 0 when node i is a zero-injection
node. The function Placement(×) starts at the root node and
traverses the tree in a depth-first search manner. At each
depth, the algorithm constructs arrays of expected power
flows for the visited lines or edges. The full array of expect‐
ed power flows flow_array for a line en is constructed only
after visiting all child nodes of node n. Since every node in
a network except the leaf nodes has child nodes, the arrays
of expected power flows are constructed starting from the
leaf nodes of the tree. The constructed arrays continue to
grow as the algorithm backtracks from leaf nodes towards
the root node. The arrays consist of the complete set of all
possible expected flows on each line.

If any line en has repeated values of expected flows in its
array, then it means that two different outage scenarios in
the sub-tree rooted at node n result in the same flow mea‐
surement on line en. The only way to differentiate the simi‐
lar outage scenarios is to measure the power flow on line en

Algorithm 1: Placement(n,P, d,T )

1: Input: node n, current placement P, load forecasts d, and topology T
2: Output: flow_array, updated P, updated T
3: Begin

4: S =Child(nT )

5: s= Size(S)

6: if s== 0 & n¹ 0 // No children

7: flow_array =UpFlow(ndT )

8: return

9: else if s== 1 & n¹ 0 // One child and non-root node

10: [ f_array,P,T ]=Placement(S,P, d,T )

11: flow_array =[UpFlow(ndT ) flow_array +UpFlow(ndT )]

12: return

13: else

14: indx =[ ]

15: f_array =[ ]

16: for i =1 to s do

17: [ f_array[i],P,T ]=Placement(S [ ]i ,P, d,T )

18: if IsEmpty( f_array[i])== 0 then

19: indx.append(i)

20: end if

21: end for

22: if dn ¹ 0 and Size(indx)== 1 then

23: flow_array =[UpFlow(ndT ) f_array[1]+UpFlow(ndT )]T

24: else if dn == 0 and Size(indx)== 1 then

25: flow_array = f_array[1]

26: else

27: flow_array =[ ]

28: for j = 1 to Size(indx) do

29: flow_array =CombineVects( flow_array f_array[ j])

30: end for

31: flow_array =[UpFlow(n dT ) flow_array +UpFlow(ndT )]T

32: end if

33: //Check if all values are unique

34: if Unique( flow_array)== 1 then

35: return

36: else

37: //Place sensor at node n

38: P = P⋃ n

39: flow_array =[ ]

40: //Update expected flow above sensor

41: [T ]=UpdateTopology(nT )

42: return

43: end if

44: end if
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and the lines connecting node n to its child nodes. This is
achieved by placing a sensor at node n as illustrated in
Fig. 2(b) in which a sensor is placed at node 1.

The lines connecting leaf nodes to their parent nodes al‐
ways have a unique set of expected power flows because
there is only a single node contributing to the power flow on
that line. Hence, no sensors are placed at leaf nodes. Also,
no sensors are placed at nodes with a single child node,
since if a node n has a single child node, the expected pow‐
er flows for the line en will always be unique, providing the
node does not have a zero demand. If a node n has zero de‐
mand, then the repeated value in the expected array of
flows for line en is discarded since it is associated with a nu‐
merically indistinguishable outage. Hence, a sensor is placed
at a node m with more than one child node if and only if the
expected power flows in the flow array flow_array for the
line em are not all unique.

Placement of a sensor at a node n distinguishes all outage
scenarios in the sub-tree rooted at node n and thereby en‐
ables their unique detection. This creates one of the disjoint
sub-trees discussed previously. Due to this, the sub-tree root‐
ed at node n can be ignored when continuing to traverse the
remainder of the distribution network, thus decoupling the
ML outage detection. Therefore, when the algorithm back‐
tracks from a node with a sensor (Lines 37-39 in Algorithm
1), it returns to the parent node an empty array of expected
flow values, and also deletes the sub-tree rooted at node n
(Line 41 in Algorithm 1). However, if the elements in the ar‐
ray of expected flows flow_array of a line en are all unique
and no sensor is required at node n, the array of flows is
grown until another sensor is placed or the remainder of the
tree is traversed completely.

It is important to note that the repeated values in the array
of expected flows for a line en indicates that some outages

in the downstream of the node n will be unidentifiable if a
sensor is not placed at node n. This can be easily understood
by comparing the sensor placements of Fig. 2(a) and Fig. 2
(b). Hence, it is by construction that the proposed scheme en‐
sures that all the detectable outages in the network will be
identifiable. Further, the obtained placement is guaranteed to
have the minimum number of sensors required to achieve
identifiability. This can be intuitively explained. Suppose
that a sensor is removed from the obtained placement. By
construction, removing any sensor from the obtained place‐
ment is guaranteed to result in some unidentifiable outages.
We could attempt to recover identifiability in the network by
changing the locations of some of the other sensors in the
network. However, this is not possible since moving any of
the other sensors would result in some other unidentifiable
outages. Thus, no other placement scheme can guarantee the
identifiability of all outages in the network with a fewer
number of sensors than the proposed placement scheme.

It is important to note that in the proposed sensor place‐
ment the nodal load forecasts are assumed to be noise-free,
i.e., the true load is equal to the expected load and the true
power flow is equal to the expected power flow, and the ex‐
pected loads are used to perform the sensor placement. How‐
ever, the true loads and the true power flows are noisy distri‐
butions of the expected loads and flows. This might raise
some issues. Therefore, the following definition discusses
the effect of having noisy nodal load forecasts on the detect‐
ability of identifiable outages.

Definition 3: it is important to note that a sensor place‐
ment in which all detectable outages satisfy Definition 2 un‐
der noise-free conditions, does not guarantee the perfect de‐
tection under noisy conditions. For example, consider the
case where the distribution network and sensor placement
are given in Fig. 2(a) and suppose that the nodal load fore‐
casts for v2 and v3 are 19.9 and 20.1, respectively. In this
case, all outages in the network are identifiable, but if the
variance of the noise affecting the load forecasts is sufficient‐
ly large, the performance of an outage detector relying on
power flow measurements along line e1 is likely to be unfa‐
vorable, unless a sufficiently large number of measurements
are made so that a more accurate estimate of the flow on e1

can be obtained. On the other hand, a placement where
some outages fail to satisfy Definition 2 cannot ensure any
detection method to differentiate those outages with any
number of collected measurements even in the absence of
noise. The reason is that the mapping between the expected
flow measurements and possible outage scenarios are not
unique in this scenario.

The complexity of the proposed sensor placement algo‐
rithm is polynomial, i.e., O(N + 1), where N + 1 is the num‐
ber of nodes in the network. For each line in the network,
an array of flows is constructed using the flow arrays of the
downstream lines. The algorithm starts at the parent edges of
the leaf nodes. For the parent edges of the leaf nodes the
flow arrays consist of only two elements, i.e., zero when the
line is in outage and the expected flow when the line is not
in outage. Then, these flow arrays are used to construct the
flow arrays of the edges above and this recursive process

Subroutine 1: CombineVects(x1x2)

1: Input: vectors x1 and x2

2: Result: vector x

3: Begin

4: n1 = Size(x1)

5: n2 = Size(x2)

6: if n1 == 0 then

7: x = x2

8: return

9: else if n2 == 0 then

10: x = x1

11: return

12: end if

13: x =[x1x2]T

14: for i= 1 to n1 do

15: for j = 1 to n2 do

16: x.append(x1 [i]+ x2 [ j]) // Append summation to the vector x

17: end for

18: end for

19: return
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continues with the root node. If a sensor is placed at a node,
the algorithm returns an empty flow array vector; otherwise,
it returns the computed flow array vector. Since each node is
visited exactly once in this recursive process and the flow ar‐
rays are constructed using the available downstream flow ar‐
rays, the complexity of the placement is O(N + 1).

V. OUTAGE DETECTION

This section presents the novel outage detection algo‐
rithm. The objective of the algorithm is to identify all the to‐
pologically detectable outage lines as the set F, and then
construct the current topology of the energized tree T 0. Since
the proposed sensor placement ensures the identifiability un‐
der noise free conditions, the outage detection approach will
detect all the topologically detectable outages with absolute
certainty in the absence of noise. In practice, nodal load fore‐
casts are noisy and therefore the performance of outage de‐
tection will depend on the noise statistics.

The outage detection algorithm is started by initializing
the set of line outages F as an empty set and the topology of
the energized tree T 0 as the nominal outage free topology
T full. A line outage will result in the loss of all loads down‐
stream of the outage. Due to this, the power flow on the line
in outage and all the lines downstream of the outage will be
zero. Also, the power flows on some of the lines remaining
in T 0 will be reduced due to the disconnection. Hence, the
first step is to identify all the lines in E(P) that have a zero
flow measurement. Let this set be EZ. Some of the lines in
EZ might be the lines in outage while some of the lines
might have zero flow due to an upstream line outage.
Hence, the next step is to identify the lines in EZ that are ac‐
tually in outage. If a sensor installed at a node n measures
zero flow along a line drawing power from n but measures a
positive flow on the line en, we can identify with absolute
certainty that an outage occurrs on the line with zero flow.
Using this approach, we can identify the lines in EZ that are
actually in outage and include them in the set F. Such line
outages are called directly identifiable line outages, and are
represented by the set FD. Alternatively, it is also possible
that a zero flow is measured on all lines connected to a node
n (with a sensor), including the line en. In this case, it is pos‐
sible that en is in outage. However, we cannot conclude with
the certainty that en is in outage unless we are sure that
there is no line outage upstream of en. Hence, we shall re‐
turn to the remaining lines in EZ, i.e., EZ \FD, once we identi‐
fy any upstream line outage.

After identifying the lines in E(P) with zero flow, the next
step is to adjust the expected flows of the remaining lines in
E(P) that have non-zero measured flows, i.e., E(P)\EZ. This
is performed by subtracting the expected flows of the lines
in EZ from the expected flows of the lines in E(P)\EZ that
are in the upstream of the directly identifiable outages, i.e.,
according to the graph structure T 0. The reason behind this
is intuitive. Since the lines in EZ have zero flow, we can con‐
clude that the loads downstream of those lines are discon‐
nected from T 0 with certainty, irrespective of whether the
lines themselves are in outage or not. Due to this, for some

of the lines in E(P)\EZ that are in the upstream of the lines
in EZ, we cannot expect the power flows to be the same as
in an outage-free scenario. The power flows would be re‐
duced due to the loss of loads. Hence, we perform the sub‐
traction. After this step, we update T 0 by removing the lines
EZ and all the lines downstream of EZ.

Next, for all the lines in E(P)\EZ, in order of decreasing
depth, a hypothesis test is performed to detect whether the
measured (non-zero) flow matches with the updated expect‐
ed flows or is less. This is performed by the following sim‐
ple binary hypothesis test.

H0: yT true
(en)= ȳT updated

(en) (6)

H1: yT true
(en)< ȳT updated

(en) (7)

where ȳT updated
(en) is the updated expected value for yT true

(en)

(the measured flow on line enÎE(P)\EZ), which is obtained
by using (4) after replacing d͂i with di. Based on Assumption
3, the decision between the two hypotheses is done using
(8), which is compared to a threshold value chosen to ensure
a desired false alarm probability according to the popular
Neyman-Pearson lemma [28].

zn =
(yT true

(en)- ȳT updated
(en))2

σ 2
(8)

For a line enÎE(P)\EZ, if hypothesis H1 is chosen, the
line is included in a set A. For each line in A, the value
Dy(en)= yT true

(en)- ȳT updated
(en) is computed. The value Dy(en) is

the difference between the measured flow on en and our up‐
dated expected value for it. We also define an isolated sub-
tree S(en) for each line enÎA composed of all lines and
nodes downstream of node n. Further, we associate each sub-
tree S(en) with the corresponding value of Dy(en). Next, for
each sub-tree S(en) , we generate an array of expected flows
on line enÎE(P)\EZ with all topologically detectable outages
that may occur in S(en). However, generating the array of ex‐
pected flows with all possible outages is computationally ex‐
pensive. To simplify this, we check if there are any single
line outages in S(en) that would result in a Dy(en) which is
significantly larger than the one we obtained. If yes, we ex‐
clude all such single line outages from the process of gener‐
ating the array of expected power flows for the sub-tree.
This is intuitive because if the outage of a single line results
in a larger Dy(en) than the one we obtained, it is impossible
for the line to be in outage. This motivates the simple binary
hypothesis test.

H0: Dy(en)£ yT true
(en)- ẏS(en)\em

(en) (9)

H1: Dy(en)> yT true
(en)- ẏS(en)\em

(en) (10)

where ẏS(en)\em
(en) is the expected power flow on line en in the

single outage scenario where line em is in outage. If H1 is ac‐
cepted in (10), all outages involving em can be ignored when
constructing the array of expected power flows for the sub-
tree S(en).

To generate the array of expected power flows for the sub-
tree S(en) with enÎE(P)\EZ, we traverse S(en) using a depth-
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first search method as long as we continue to accept H1 in
(10). Then, if we find a line where H1 in (10) is rejected, we
generate a vector of expected power flows associated with
the outages involving that line and all the lines below it.
Then we backtrack and continue to traverse the sub-tree us‐
ing a depth-first search as long as we accept H1. Once all
the vectors of expected power flows are generated over the
different regions of S(en) where we accept H1, they can be
concatenated to create the array of expected flows by using
the function CombineVects. For each sub-tree S(en), we em‐
ploy a modified version of the ML detector given in (5) to
identify the outages in S(en). We modify the ML detector
given in (5) by replacing Ss (E) with the set of outages that
map to the values in the array of expected flows for S(en),
and by replacing Y with the power flow measurement for
line en. It is in this step that we identify the majority of out‐
ages in the network. We update the set F with the detected
line outages. Also, we remove the detected line outages and
the line downstream of those outages from T 0, thereby updat‐
ing the current topology. We repeat this for each sub-tree.

Now, we return to the line enÎEZ \FD, i.e., the line which
has a measured flow zero and where node n is endowed
with a sensor. For every such line, if none of the identified
outages in F are on the upstream path from the node n to
the root node (or the next node endowed with a sensor), we
can conclude with the certainty that the line en is in outage.
Then, we update F with all the lines in EZ \FD that we con‐
clude to be in outage. Also, we remove the detected line out‐
ages and the lines downstream of those outages from T 0,
thereby updating the current topology. Finally, the values of
F and T 0 correspond to the detected line outages and the cur‐
rent topology of the distribution network, respectively. Note
that unlike the sensor placement algorithm, the complexity
of the outage detection algorithm depends on several specif‐
ic factors of the network such as the nominal topology, the
nodal load statistics, the sensor placement and the outages in
the network. The sensor placement in turn depends on the
nodal load statistics and the nominal topology. Since the nod‐
al load statistics and the outages are operation characteristics
of the network, which are time-dependent and user-depen‐
dent, we do not provide a complexity analysis of the outage
detection algorithm.

VI. NUMERICAL RESULTS

This section presents numerical results which illustrate the
performance of the outage detection algorithm. This algo‐
rithm apply power flow measurements obtained from the sen‐
sors according to the proposed sensor placement algorithm.
In the numerical results, a modified version of the IEEE 123-
node test feeder is considered, in which all lines are as‐
sumed to be single phase and the load demand at each node
to be the sum of spot loads over all three phases. As ex‐
plained in Definition 2, noise-free sensor measurements are
considered. However, nodal forecasts are considered to be
noisy. As mentioned above, we analyze our outage detection
algorithm in two different cases. Note that for Case 2, we as‐
sume that the nodal forecast noise in the real and reactive

flow measurements are independent and identically distribut‐
ed normal random variables.

Firstly, we find the sensor placement for the IEEE 123-
node test feeder by applying our sensor placement algo‐
rithm. This results in a sensor placement with 20 sensors lo‐
cated at nodes:

P∗ ={1, 3, 8, 13, 18, 23, 26, 36, 40, 44, 57,

67, 76, 78, 81, 89, 93, 97, 105, 110} (11)

The node numbers in (11) follow those given in the docu‐
mentation of the test feeder. Figure 3 shows the IEEE 123-
node test feeder with the sensor locations under P∗ indicated
by red circles.

At first, we simulate the probability of detection of the
proposed algorithm against the standard deviation of the er‐
ror in nodal forecast σ. We run the detection algorithm for
1000 different runs. In each run, we choose a random num‐
ber of topologically detectable line outages from a uniform
distribution over the number of lines in the feeder. By re‐
cording the number of runs in which the outages are correct‐
ly identified and dividing it by the number of runs (1000),
the probability of detection is estimated. Figure 4 illustrates
the results. Note that the smallest nodal demand in the IEEE
123-node test feeder is 20, so a standard deviation of 2 is
quite significant. From Fig. 4, it can be clearly observed that
employing both real and reactive power flow measurements
significantly increases the probability of detection, especially
for higher values of σ. This should be expected as the num‐
ber of measurements for detection is doubled by including
reactive power flow measurements.

The results illustrated in Fig. 4 are obtained by choosing a
random number of topologically detectable outages. A large
number of generated outage scenarios involve the scenarios
where a significant number of outages are very close to the
root node. Due to the outages close to the root node, the de‐
viations in the measured flows are large and this may im‐
prove the detection performance. We obtain additional re‐
sults by restricting the number of outages N1 to be uniformly
distributed between 1 and 20, so that the majority of the gen‐
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erated outages would be farther from the root node. Figure 5
illustrates these results and shows that the probability of de‐
tection has decreased for both Case 1 and Case 2 in compari‐
son with the results of Fig. 4.

Finally, Fig. 6 illustrates the effect of increasing the num‐
ber of measurement samples per sensor T used for detection.
The results for Fig. 6 are obtained in Case 1 with load fore‐
cast σ = 2.

The results of Fig. 6 show that only a small number of
measurement samples are needed in order to achieve signifi‐
cant increases by the probability of detection. Further in‐
crease in the number of samples does not significantly im‐
prove the probability of detection.

VII. CONCLUSION

This paper focuses on topology estimation and outage de‐
tection in radial distribution networks. Noisy nodal load fore‐
casts and power flow measurements of a subset of the lines
in the network are used for outage detection. The power
flow measurements are obtained by the sensors installed on
a subset of nodes. For the sensor placement, a recursive sen‐

sor placement algorithm is proposed that provides the mini‐
mum number and locations of sensors so that all topological‐
ly detectable outages in the network are identifiable. Using
the measurements obtained from the proposed sensor place‐
ment, a novel algorithm of outage detection and topology es‐
timation is proposed. The algorithm takes advantage of the
decoupling nature of the ML detector over sub-trees in the
network. Finally, numerical results for the IEEE 123-node
test feeder are presented. The results illustrate the perfor‐
mance of the outage detection algorithm and the proposed
sensor placement algorithm. In the following study, we will
work on extending our algorithms to networks with distribut‐
ed generators and microgrids since these networks pose criti‐
cal challenges [29] that are not considered in the current for‐
mulation.
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