
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 2, March 2020

Optimal Combined Heat and Power Economic
Dispatch Using Stochastic Fractal Search

Algorithm
Muwaffaq I. Alomoush

Abstract——Combined heat and power (CHP) generation is a
valuable scheme for concurrent generation of electrical and
thermal energies. The interdependency of power and heat pro‐
ductions in CHP units introduces complications and non-convex‐
ities in their modeling and optimization. This paper uses the sto‐
chastic fractal search (SFS) optimization technique to treat the
highly non-linear CHP economic dispatch (CHPED) problem,
where the objective is to minimize the total operation cost of
both power and heat from generation units while fulfilling sev‐
eral operation interdependent limits and constraints. The
CHPED problem has bounded feasible operation regions and
many local minima. The SFS, which is a recent metaheuristic
global optimization solver, outranks many current reputable
solvers. Handling constraints of the CHPED is achieved by em‐
ploying external penalty parameters, which penalize infeasible
solution during the iterative process. To confirm the strength of
this algorithm, it has been tested on two different test systems
that are regularly used. The obtained outcomes are compared
with former outcomes achieved by many different methods re‐
ported in literature of CHPED. The results of this work affirm
that the SFS algorithm can achieve improved near-global solu‐
tion and compare favorably with other commonly used global
optimization techniques in terms of the quality of solution, han‐
dling of constraints and computation time.

Index Terms——Combined heat and power (CHP), economic
dispatch, global optimization, metaheuristic algorithms, non-
convex optimization problem, power systems, stochastic fractal
search.

I. INTRODUCTION

ECONOMIC dispatch (ED) of electric power generation
units is among the most imperative operational optimi‐

zation issues in power systems. This ED-constrained non-lin‐
ear problem must be solved to minimize the total operation
cost of committed units while satisfying the load demand
and obeying physical limits of units. It can also be augment‐
ed to consider other concerns such as losses in transmission
network and pollution quantity made by generation units.

The combined heat and power (CHP) generation (cogene‐

ration) refers to the joint generation of electrical/mechanical
power and advantageous thermal energy from the same
source of energy for heating and cooling intentions. The
CHP generation is the most effective model for concurrent
production of both electrical energy and thermal energy [1].
As an environmentally friendly system, cogeneration offers
considerable savings of the generation cost compared to the
heat-only boilers and traditional thermal units. The produc‐
tion of CHP is restricted by the feasible operation region
(FOR), as productions of heat and power in these units are
jointly connected.

Nowadays, optimal dispatch of generation mix involving
CHP units is an attractive and crucial optimization issue in
power system operation. The major worldwide shift within
the energy sector caused by launching microgrid initiatives
and technologies has increased the interest in CHP units.
Generation units in CHP ED (CHPED) comprise classical
thermal power-only supplying units, CHP generation units,
and heat-only generation units (boilers). The complexity of
this dispatch originates from the FORs of CHP units, which
indicates dual non-linear dependency between heat and pow‐
er productions. CHPED aims to find an optimal schedule of
heat and power generation while respecting various electrical
and operational constraints and limits of the generation
units. The optimization problem is non-linear and non-con‐
vex which requires global solvers.

Solution techniques of the CHPED are broadly classified
as conventional mathematical methods and recent methods.
Conventional methods include Lagrangian relaxation (LR)
[2], Benders decomposition [3], [4], mixed-integer non-linear
programming [5], and branch and bound (B&B) algorithm
[6]. The classical techniques cannot perform effectively for
solving CHPED problems as they have shortcomings such as
sensitivity to initial estimates, convergence into local optimal
solution, computational complexity, and difficulties in han‐
dling discontinuities and non-smooth functions, especially
when the dispatch problem is highly non-linear.

In the past decade, various recent optimization solvers
have been disclosed in the literature to reach global or near-
global solutions of non-linear optimization problems. Recent
methods include nature-inspired metaheuristic optimization
algorithms. Application of these algorithms for CHPED prob‐
lems has received research attention in the last few years, as
they can deal with discontinuities, high non-linearities, and
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non-convexities in objective functions and constraints. Many
metaheuristic techniques have been positively utilized to
treat CHPED problems such as genetic algorithm (GA), har‐
mony search (HS), particle swarm optimization (PSO), fire‐
fly algorithm (FA), cuckoo search algorithm (CSA), artificial
bee colony (ABC), gravitational search algorithm (GSA),
group search optimization (GSO), grey wolf optimization
(GWO), bat algorithm (BA), differential evolution (DE), ant
swarm optimization (ASO), invasive weed optimization
(IWO), teaching learning based optimization (TLBO), artifi‐
cial immune system (AIS), krill herd (KH), and evolutionary
programming (EP). The most recent applied heuristic optimi‐
zation methods to attain optimum results of CHPED prob‐
lem were reported in [1].

Reference [7] presented a general review of modeling,
planning and energy management in a microgrid that used
combined cooling, heating and power (CCHP). Reference
[8] provided an ample review of recent trend in CCHP
schemes and optimization techniques used to improve their
performance. Reference [9] presented a review on definition,
benefits, characteristics, and various configurations of CCHP
systems. Reference [10] presented the development, benefits
and analysis of CCHP schemes, and reviewed sizing, con‐
trol, optimization procedure, and management of these sys‐
tems. Reference [11] reviewed the current and future trends
in micro CHP systems to improve system efficiencies and re‐
duce gas emissions, and investigated such systems for resi‐
dential applications including modeling and simulation.

In [12], the self-adaptive real-coded genetic algorithm
(SARGA) was utilized to solve the non-convex CHPED opti‐
mization problem considering the inequality and equality
constrains, and penalty technique was suggested to handle
the constraints. In [13], an improved GA technique utilizing
a multiplier updating was presented to solve the CHPED
with a small population size. In [14], CHPED with losses in
transmission network and valve-point effects was considered,
where a mutation operator of real coded GA was used to im‐
prove the convergence time and optimal operation cost. In
[15], the researcher presented a solution of a multi-objective
economic-environmental CHPED problem using non-domi‐
nated sorting real coded GA.

In [16], PSO was employed to deal with a multi-objective
CHPED problem considering operation cost, gas emissions,
and wind power resources. A PSO using time-varying accel‐
eration factors was used in [17] to obtain the optimal produc‐
tions of power and heat units in CHPED considering valve-
point effects and network losses. An improved PSO (IPSO)
technique was employed to solve a stochastic model of
CHPED problem in [18], where both demands of heat and
power in the system were treated as random variables.

In [19], DE was used to find the optimal schedule of CHP
units considering valve-point effects and losses in transmis‐
sion network. In [20], a DE utilizing a Gaussian mutation op‐
erator was employed to solve the CHPED considering valve-
point effects and network losses. In [21], the DE was inte‐
grated with the sequential quadratic programming to solve a
short-term scheduling of CHP generating units. A combina‐
tion of continuous grasp algorithm and DE for solving non-

smooth non-convex CHPED problem was introduced in [22]
to enhance the global search ability and avoid convergence
to local minima. Reference [23] introduced a hybrid DE
with multiplier updating to obtain the optimal solution of a
CHPED within the FOR of CHP units.

The GSO was presented in [24] to deal with the non-con‐
vex non-smooth CHPED considering transmission losses,
valve-point effects and prohibited operating zones of classi‐
cal thermal generation units. A modified GSO utilizing the
B-Spline wavelet theory was introduced in [25] to solve the
CHPED problem to avoid premature convergence of the so‐
lution. The GSA was used in [26] to solve the CHPED in‐
cluding transmission network losses and valve-point effects.

The CSA was used in [27], [28] to solicit the optimal
schedule of generation in CHP units considering transmis‐
sion losses and valve-point effects. A CSA technique utiliz‐
ing an external penalty function was used in [29] for the
CHPED. Reference [30] used the GWO for different formu‐
lations of CHPED optimizations considering ramp-rate lim‐
its, transmission losses, valve-point effects, and spinning re‐
serve.

In [33], a hybrid HS-GA was used for the CHPED prob‐
lem, where GA features were used to handle the difficulties
of non-linearity and non-convergence, and HS features were
used to increase the probability of global optimal solution.

The IWO algorithm was used in [34] for solving CHPED
problem. The bee colony optimization (BCO) was used in
[35] for solving non-convex CHPED problem considering
power transmission losses. The TLBO integrated with oppo‐
sition-based learning (OBL) for improved convergence char‐
acteristics was used in [36] to solve the non-linear CHPED
optimization problem, and the AIS algorithm was suggested
in [37]. The FA was proposed in [38] to treat the CHPED
problem with the two objective functions of the total fuel
cost and gas emission, considering the spinning reserves,
where the FA was used to attain a series of non-dominated
solutions utilizing chaotic mechanism and new mutation pro‐
cedures. In [39], the FA was used for the CHPED problem,
with an improved random search process. The KH algorithm
was used in [40] to obtain the power and heat generation
scheduling in the CHPED, considering transmission network
losses and valve-point effects. In [41], the crisscross optimi‐
zation (CSO) algorithm was used for solving CHPED prob‐
lem. The algorithm was very competent in both accuracy
and convergence rate compared to other algorithms.

The metaheuristic global optimizer, stochastic fractal
search (SFS), was a nature-inspired algorithm proposed in
[42]. Based on diffusion and fractal properties, this algo‐
rithm overcame the shortcomings of the other commonly
used metaheuristic solvers. By employing uncomplicated op‐
erations, it can realize a global or a better near-global solu‐
tion with fewer iterations, larger accuracy, and less conver‐
gence time [42]. The SFS replicated the natural growth phe‐
nomenon by using the fractal mathematic concept [42].

The work in this paper utilizes the SFS technique to deal
with the CHPED problem. Handling equality and inequality
constraints is achieved in this paper using penalty parame‐
ters that penalize infeasible solution during the iterative pro‐
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cess. Through these parameters, the constrained CHPED
problem is transformed into an unconstrained optimization.
To confirm its efficient performance, the algorithm has been
used for two distinct systems, which are commonly used as
test cases in CHPED literature. Comparisons of results pre‐
sented in this paper disclose that the optimal SFS-based solu‐
tion can decrease the production costs with a short computa‐
tion time. It also reveals that the optimal SFS-based solu‐
tions are superior to some of the frequently employed global
optimization solutions

The remainder of this paper is organized as follows. Sec‐
tion II presents the mathematical formulation of CHPED.
Section III presents a detailed description and the mathemati‐
cal modeling of the SFS. Section IV presents the test sys‐
tems, optimization results, and discussion of results. Section
V presents summary of the main findings, concluding state‐
ments, and recommendations for future effort.

II. MATHEMATICAL FORMULATION OF CHPED
OPTIMIZATION PROBLEM

The optimization problem of CHPED is non-linear and
non-convex, whose intent is to achieve the optimal mix of
heat and power generations from three different types of re‐
sources: conventional power-only units, co-generation (CHP)
units, and heat-only units. Accordingly, the objective func‐
tion, which is the total production cost, is a combination of
three different cost functions with equality and inequality
constraints. This optimization problem has two equality con‐
straints. The first is that the total electrical power produced
from all power generation units meets the total power de‐
mand pd, and the second is that the total heat produced from
all heat generation units meets the total heat demand hd. The
inequality constraints relate to the CHP units, which require
that optimal productions of CHP units should lie within the
FORs. The limits indicate the upper and lower limits of all
units participating in the CHPED. Figure 1 shows three pos‐
sible types of heat-power plane of a CHP unit, which repre‐
sent possible FOR of any CHP unit [3], [12], [17], [23],
[29], [32]-[34], [39], where P and H indicate real power pro‐
duction and heat production of a CHP unit, respectively.

The CHPED optimization problem can be mathematically
formulated as follows [3], [12] - [14], [23], [27], [29], [32] -
[34], [39]:

min C =∑
i = 1

Np

Ci ( )pi +∑
j = 1

Nc

Cj ( )pjhj +∑
k = 1

Nh

Ck ( )hk (1)

s.t.

∑
i = 1

Np

pi+∑
j = 1

Nc

pj= pd (2)

∑
j = 1

Nc

hj+∑
k = 1

Nh

hk= hd (3)

pmin
i £ pi £ pmax

i i = 12Np (4)

p
min ( )hj

j £ pj £ p
max ( )hj

j j = 12Nc
(5)

h
min ( )pj

j £ hj £ h
max ( )pj

j j = 12Nc
(6)

hmin
k £ hk £ hmax

k k = 12Nh (7)

where the cost functions are given by:

Ci (pi )= ai + bi pi + ci p2
i (8)

Cj (pjhj )= aj + bj pj + cj p2
j + djhj + ejh

2
j + fj pjhj (9)

Ck (hk )= ak + bkhk + ckh
2
k (10)

where C is the total fuel (production) cost; Ci, Cj, Ck are the
fuel costs of the conventional power-only unit, co-generation
unit, and heat-only unit, respectively; ai, bi, ci are the fuel
cost coefficients of the ith conventional power-only unit; aj bj

cj, dj, ej, fj are the fuel cost coefficients of the jth co-genera‐
tion unit; ak, bk, ck are the fuel cost coefficients of the kth

heat-only unit; pi and pj are the power productions of con‐
ventional power and co-generation units, respectively; hj and
hk are the heat productions of co-generation and heat-alone
units, respectively; hd and pd are the heat and power de‐
mands, respectively; Np, Nc, Nh are the numbers of conven‐
tional power units, co-generation units and heat-alone units,
respectively; pmin

i and pmax
i are the minimum and maximum

power generation limits of the ith conventional unit, respec‐
tively; pmin

j and pmax
j are the minimum and maximum power

generation limits of the jth conventional unit, respectively;
hmin

j and hmax
j are the minimum and maximum heat generation

limits of the jth co-generation unit, respectively; and hmin
k and

hmax
k are the minimum and maximum heat generation limits

of the kth heat-only unit, respectively.
The constrained CHPED problem is transformed into an

unconstrained one by handling equality and inequality con‐
straints utilizing the approach of penalty parameters [12],
[29], which penalizes the infeasible solution during the itera‐
tive process. The proper settings of the penalty factors must
be cautiously selected after some trials towards improved op‐
timal solutions while respecting the constraints [29]. Be‐
cause various constraints have various orders of magnitude,
it is more appropriate to initially normalize each equality
and inequality constraint. The ith equality constraint,
g'i (x)- ai = 0, and the jth inequality constraint, h'j (x)- bj⩽0,

P

H 

P 

H

P 

H 

Fig.1. Possible shapes of FOR of a CHP.
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can be normalized to be gi (x) º g'i ( )x ai - 1= 0 and

hj ( )x º h'j ( )x /bj–1£ 0, respectively. After normalizing the

constraints, the optimizaiton problem can be expressed in
compact form as follows:

min C (x1x2xn ) (11)

s.t.

gi (x1x2xn )= 0 i = 12Nec (12)

hj (x1x2xn )£ 0 j = 12Nic (13)

xmin
k £ xk £ xmin

k k = 12n (14)

where n, Nec and Nic are the number of state variables (un‐
known), number of equality constraints and number of in‐
equality constraints, respectively. The panelized objective
function becomes:

f =C (x1x2xn )+ r
é

ë
êê∑

i = 1

Nec

| gi (x1x2xn ) |
2

+

ù

û
úú∑

j = 1

Nic |
|
||

|
|max ( )0hj ( )x1x2xn

2

(15)

where r is the penalty factor.

III. SFS ALGORITHM

The nature-inspired SFS technique is a new metaheuristic
global optimization algorithm, which uses the concept of
fractals to imitate the natural growth. The diffusion property
frequently used in random fractals is utilized by the particles
in this technique to efficiently explore the search space [42].

Random fractals can be produced by adjusting the itera‐
tion process using stochastic rules. The SFS algorithm uses a
random walk to model the diffusion process, where the dif‐
fusing particle stays connected with the seed particle which
produces it. This process is repeated until a cluster is estab‐
lished [42].

The diffusion and the updating are the two major process‐
es that occur in the SFS technique. Figure 2 presents the
flowchart of the SFS and summarizes the diffusion phase
and the updating process which involve two updating pro‐
cesses. The two processes will be detailed next. In this fig‐
ure, GW1 and GW2 represent the Gaussian walks participat‐
ing in the diffusion process, BP is the best point location in
the group, and Pi represents the ith point in a group, which
will be discussed later in the paper. In the diffusion process,
every particle diffuses around its current position to guaran‐
tee exploitation characteristic. The diffusion process prevents
entrapment in local minima and improves the opportunity of
achieving the global solution. In the updating process, the
SFS shows how a point among a group revises its position
based on the positions of other points in the same group.
The SFS adopts a static diffusion process, where the best
produced particle achieved from the diffusing process is the
only particle taken into consideration, while the other parti‐
cles are neglected. The SFS utilizes random methods as the

updating processes.

Suppose ε and ε' are two random numbers which are dis‐
tributed uniformly in the range [0, 1]. A series of Gaussian
walks (GW1 and GW2) engaged in the diffusion course are
defined by [42]:

GW1 =Gaussian (μBPσ)+ ε ×BP - ε'Pi (16)

GW2 =Gaussian (μPσ) (17)

where μBP, μP and σ are the Gaussian means and standard de‐

viation, respectively; μBP = | BP | in (16), and μP = | Pi | in

(17). If g refers to the generation (iteration) number, σ in
(16) and (17) is determined as follows [42]:

σ = | Pi -BP

g
log g | (18)

For an optimization problem with dimension D, every spe‐

Diffusion
process

Initialize populationsize

Post best
solution

Evaluate fitness function to find BP

Update jth component of Pi based on (21)

Update position of Pi based on (21) and (23)

Set maximum diffusion number (MDN)

Based on user preference,
select Gaussian walk (GW1 or GW2) 

to create new position

Is the end criteria met?

N

 

Select BP among
created Gaussian

walks and 
return function

Do for each component j in 
each point Pi in the group 

First updating
process

Second updating
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Rank all points 

End

i=i+1≤MDN?

N

rank (Pi)≤rank[0, 1]?

Y

N

Y

Y

rank (Pi)≤rank[0, 1]?

Y
N

i=1

i=i+1

Rank all points 

i=1
i=i+1

Fig. 2. Flowchart of SFS algorithm.
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cific particle assumed to solve the problem has been made
based on a D-dimensional vector. In the initialization phase
as shown in Fig. 2, each point is randomly initialized based
on its maximum and minimum bounds. The initial value of
the jth point (Pj) is determined as follows [42]:

Pj = LB+ ε (UB- LB) (19)

where LB and UB refer to the upper and the lower bounds
of problem variables, respectively.

After the initialization of all particles, the fitness value of
each particle is evaluated to reach the best point BP among
all particles. For consistency with the exploitation ability in
the diffusion process, all points roam around their current lo‐
cation to exploit the problem search space [42].

Due to the exploration property, SFS uses two statistical
actions to improve the better space exploration. The first one
is applied for each individual vector index, while the other
one is then performed for all points. Initially, the first action
ranks all points based on fitness values. Each point i in the
group is then designated a probability value (Pai) which
obeys a uniform distribution determined by [42]:

Pai = rank (Pi ) N (20)

where rank (Pi ) is the rank of point Pi among other points in

the group; and N is the number of all points in the group.
Equation (20) indicates that the better the rank of point, the
higher the probability to be selected. As illustrated in Fig. 2,
for each point Pi in a group, if Pai < ε is met, the jth compo‐
nent of Pi is revised based on the following relation; and if
it is not met, it stays unaltered [42].

P'i ( j)=Pr ( j)- ε (Pt ( j)-Pi ( j)) (21)

where P'i ( j) is the new updated location of point Pi; and Pr

and Pt are the points selected randomly in the group.
The preceding discussion indicates that the first statistical

process is performed for the components of the points. As
shown in Fig. 2, the other statistical process adjusts the loca‐
tion of a point considering the position of other points in the
group to enhance the quality of exploration and to fulfill the
diversification property. Ahead of starting the second statisti‐
cal process, all points achieved from the first statistical pro‐
cess are ranked based on (20). As in the first process, if Pai <
ε is satisfied for a new point P'i, the existing position of P'i is
revised conforming to (22) and (23); and if Pai < ε is not sat‐
isfied, no update takes place [42].

P″i =P'i - β (P't -BP) β £ 0.5 (22)

P″i =P'i + β (P't -P'r ) β > 0.5 (23)

where P'r and P't are the randomly chosen points achieved
from the first statistical process; and β is the number pro‐
duced randomly from the Gaussian normal distribution. P'i re‐
places the new point P″i if the fitness value of P″i is superior
to that of P'i [42].

IV. RESULTS AND DISCUSSION

A. Test System 1

This system is the well-known four-unit test system in the
literature of CHPED, which is presented in [1] - [3], [12] -
[14], [17], [23], [27], [29], [31]-[34], [39] and many other re‐
lated references. It comprises one conventional power-only
unit (unit 1), two CHP units (units 2 and 3), and one heat-
only unit (unit 4). The minimum and maximum limits of the
conventional power unit are 0 and 150 MW, respectively.
The minimum and maximum limits of the heat-only unit are
0 and 2690 MWth, respectively. The FORs of the two CHP
units are illustrated in Fig. 3. The system power demand pd

and the heat demand hd are 200 MW and 115 MWth, respec‐
tively.

The four units has the following cost functions [1] - [3],
[12]-[14], [17], [23], [27], [29], [31]-[34], [39]:

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

C1 ( )p1 = 50p1

C2 ( )p2h2 = 2650+ 14.5p2 + 0.0345p2
2 + 4.2h2 +

0.030h2
2 + 0.031p2h2

C3 ( )p3h3 = 1250+ 36.0p3 + 0.0435p2
3 + 0.6h3 +

0.027h2
3 + 0.011p3h3

C4 ( )h4 = 23.4h4

(24)

The optimization problem of CHPED of this system is for‐
mulated as:

min C =C1 (p1 )+C2 (p2h2 )+C3 (p3h3 )+C4 (h4 )
The constraints are as follows:
1) Equality constraints:

{ p1 + p2 + p3 = 20

h2 + h3 + h4 = 115
(25)

2) Inequality constraints which represent the FOR of the
two CHP units:

p2 

247.0 MW
215.0 MW

98.8 MW
81.0 MW

104.8
MWth

(a)

180.0
MWth

h2 

(b)

p3 

125.8 MW 
110.2 MW

44.0 MW
40.0 MW

75.0
MWth

15.9
MWth

32.4
MWth

135.6
MWth

h3 

Fig. 3. FORs of CHP units of test system 1. (a) First CHP unit (unit 2).
(b) Second CHP unit (unit 3).
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1.781914894h2 - p2 - 105.7446809£ 0

0.177777778h2 + p2 - 247.0000000£ 0

-0.169847328h2 - p2 + 98.8000000£ 0

1.158415842h3 - p3 - 46.88118818£ 0

0.151162791h3 + p3 - 130.6976744£ 0

-0.067681895h3 - p3 + 45.07614213£ 0 h3 ³ 15.9

44- p3 £ 0 h3 < 15.9

(26)

3) The limits:

ì

í

î

ï

ï
ïïï
ï

ï

ï
ïï

0£ p1 £ 150

81£ p2 £ 247

0£ h2 £ 180
40£ p3 £ 125.8

0£ h3 £ 135.6
0£ h4 £ 2695.2

(27)

For this system, the results achieved by the proposed SFS
method for the above CHPED equations will be put in com‐
parison with the previously obtained results reported in [1],
[2], [12] - [14], [17], [27], [29], [31] - [34], [39], [41] using
LR, B&B, improved ant colony search (IACS) algorithm,
GA-based penalty function (GAPF) method, PSO, EP, FA,
improved genetic algorithm with multiplier updating
(IGAMU), HS, self-adaptive real-coded genetic algorithm
(SARGA), artificial bee colony (ABC), DE, mesh adaptive
direct search and particle swarm optimization (MADS-PSO),
mesh adaptive direct search and Latin hypercube sampling
(MADS-LHS), IWO, GSA, CSA, and CSO.

The SFS algorithm is coded in MATLAB and executed us‐
ing a 1.8 GHz, 8 GB RAM Pentium Core i5 PC. The results
of the other methods are taken from literature. The user-sup‐

plied parameter setting of the SFS are population size, maxi‐
mum generation, and MDN, which are selected to be 120,
1000, and 4, respectively.

The characteristics curve of the SFS convergence for test
system 1 is shown in Fig. 4, which illustrates a fast conver‐
gence.

The state variables, fuel costs, and average CPU times are
selected to examine the performance of the SFS with the oth‐
er techniques. Table I summarizes the results obtained for
this system using SFS method and the other methods. As
can be seen from Table I, the SFS algorithm obtains the low‐
est minimum cost with less computation time. The computa‐
tion time is among the shortest compared to that of other al‐
gorithms.

10050

Co
st 

($
/h

)

0 150 200 250 300 350 400 450 500
Iteration

2000

4000

6000

8000

10000

12000

Fig. 4. Convergence characteristics of SFS algorithm for test system 1.

TABLE I
COMPARISON OF RESULTS FOR TEST SYSTEM 1
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ì

í

î

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï
ïï
ï
ï

1.781914894h2 - p2 - 105.7446809£ 0

0.177777778h2 + p2 - 247.0000000£ 0

-0.169847328h2 - p2 + 98.8000000£ 0

1.158415842h3 - p3 - 46.88118818£ 0

0.151162791h3 + p3 - 130.6976744£ 0

-0.067681895h3 - p3 + 45.07614213£ 0 h3 ³ 15.9

44- p3 £ 0 h3 < 15.9

(26)

3) The limits:

ì

í

î

ï

ï
ïïï
ï

ï

ï
ïï

0£ p1 £ 150

81£ p2 £ 247

0£ h2 £ 180
40£ p3 £ 125.8

0£ h3 £ 135.6
0£ h4 £ 2695.2

(27)

For this system, the results achieved by the proposed SFS
method for the above CHPED equations will be put in com‐
parison with the previously obtained results reported in [1],
[2], [12] - [14], [17], [27], [29], [31] - [34], [39], [41] using
LR, B&B, improved ant colony search (IACS) algorithm,
GA-based penalty function (GAPF) method, PSO, EP, FA,
improved genetic algorithm with multiplier updating
(IGAMU), HS, self-adaptive real-coded genetic algorithm
(SARGA), artificial bee colony (ABC), DE, mesh adaptive
direct search and particle swarm optimization (MADS-PSO),
mesh adaptive direct search and Latin hypercube sampling
(MADS-LHS), IWO, GSA, CSA, and CSO.

The SFS algorithm is coded in MATLAB and executed us‐
ing a 1.8 GHz, 8 GB RAM Pentium Core i5 PC. The results
of the other methods are taken from literature. The user-sup‐

plied parameter setting of the SFS are population size, maxi‐
mum generation, and MDN, which are selected to be 120,
1000, and 4, respectively.

The characteristics curve of the SFS convergence for test
system 1 is shown in Fig. 4, which illustrates a fast conver‐
gence.

The state variables, fuel costs, and average CPU times are
selected to examine the performance of the SFS with the oth‐
er techniques. Table I summarizes the results obtained for
this system using SFS method and the other methods. As
can be seen from Table I, the SFS algorithm obtains the low‐
est minimum cost with less computation time. The computa‐
tion time is among the shortest compared to that of other al‐
gorithms.
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Fig. 4. Convergence characteristics of SFS algorithm for test system 1.

TABLE I
COMPARISON OF RESULTS FOR TEST SYSTEM 1

Algorithm

IACS [14]

MADS-PSO [27]

MADS-LHS [27]

ABC [29]

GAPF [12]

PSO [12]

DE [29]

LR [12]

B&B [12]

EP [12]

FA [39]

IGAMU [12]

HS [12]

SARGA [12]

CSO [41]

IWO

GSA

CSA

SFS

p1 (MW)

0.0800

0.0092

0.0017

0.2400

0

0.0500

0.0200

0

0

0

0.0014

0

0

0

0

0

0.0003

0

0

p2 (MW)

150.9300

157.9392

159.8000

158.7800

159.2300

159.4300

159.9400

160.0000

160.0000

160.0000

159.9986

160.0000

160.0000

159.9900

160.0000

160.0000

159.4494

160.0000

160.0000

p3 (MW)

49.0000

42.0516

40.2014

40.9600

40.7700

40.5700

39.9300

40.0000

40.0000

40.0000

40.0000

40.0000

40.0000

40.0100

40.0000

40.0000

40.5494

40.0000

40.0000

h2 (MWth)

48.8400

42.4459

42.4042

39.5800

39.9400

39.9700

40.0200

40.0000

40.0000

40.0000

40.0000

39.9900

40.0000

39.9900

40.0000

40.0000

38.8850

40.0000

40.0000

h3 (MWth)

65.7900

72.5522

72.3904

75.2300

75.0600

75.0300

74.9900

75.0000

75.0000

75.0000

75.0000

75.0000

75.0000

75.0000

75.0000

75.0000

75.4736

75.0000

75.0000

h4 (MWth)

0.3700

0.0019

0.2054

0.1800

0

0

0.0600

0

0

0

0

0

0

0

0

0

0.6414

0

0

Total cost ($/h)

9452.20

9301.38

9277.13

9276.70

9267.28

9265.10

9258.90

9257.10

9257.10

9257.10

9257.10

9257.09

9257.07

9257.07

9257.07

9257.07

9269.14

9257.07

9257.07

Computation time (s)

5.26

7.56

7.04

NA

4.32

3.09

NA

3.98

4.27

7.96

NA

5.53

4.21

3.76

1.18

11.21

7.26

5.62

3.78
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Figure 5 illustrates comparisons of the convergence char‐
acteristics of SFS and other nine algorithms used in this test
system and the next test system. These comparisons demon‐
strate the convergence speed and efficiency of the SFS to
reach the optimal solution.

The computation time of the SFS algorithm can be re‐
duced by selecting proper values of the SFS parameters in‐
cluding population size, maximum generation, and MND. Ta‐
ble II shows improvements in calculation time of test system
1 for selected sets of SFS parameters. Note that most of the
computation time is much better than those of all algorithms
compared in Table I.

B. Test System 2

This system is a five-unit system, which is also a well-
known system available in many references such as [1], [3],
[23], [25], [29], [31] - [34], [39]. It consists of one conven‐
tional power-only unit (unit 1), three CHP units (units 2, 3
and 4), and one heat-only unit (unit 5). The maximum and
minimum limits of the conventional power unit are 135 MW
and 35 MW, respectively. The minimum and maximum lim‐
its of the heat-only unit are 0 and 60 MWth, respectively.
The FORs of the three CHP units are illustrated in Fig. 6.

This test system will be examined for three different cases
of power and heat demands:

1) Case 1: pd = 300 MW, hd = 150 MWth.
2) Case 2: pd = 250 MW, hd = 175 MWth.
3) Case 3: pd = 150 MW, hd = 220 MWth.
The cost functions of the five units are given by [1], [3],

[23], [25], [29], [31]-[34], [39]:

ì

í

î

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

C1 ( )p1 = 254.8863+ 7.6997p1 + 0.00172p2
1 + 0.00115p3

1

C2 ( )p2h2 = 1250+ 36.0p2 + 0.0435p2
2 + 0.6h2 +

0.027h2
2 + 0.011p2h2

C3 ( )p3h3 = 2650+ 34.5p3 + 0.1035p2
3 + 2.203h3 +

0.025h2
3 + 0.051p3h3

C4 ( )p4h4 = 1565+ 20p4 + 0.072p2
4 + 2.3h4 + 0.02h2

4 +

0.04p4h4

C5 ( )h5 = 950+ 2.0109h5 + 0.038h2
5

(28)

The optimization problem of the CHPED of this system is
formulated as:
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Fig. 5. Comparison of convergence characteristics of SFS and other nine
algorithms for test system 1.

TABLE II
REDUCTIONS IN COMPUTATION TIME OF TEST SYSTEM 1 FOR SELECTED

VALUES OF SFS PARAMETERS

Population
size

16

16

16

16

18

18

18

18

20

20

20

20

22

22

22

22

Maximum
generation

500

600

700

800

500

600

700

800

500

600

700

800

500

600

700

800

MDN

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Total cost
($/h)

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

9257.07

Computation
time (s)

0.897198

0.968269

1.112184

1.272459

0.894139

1.067141

1.241997

1.417746

0.987465

1.181672

1.383194

1.570533

1.079808

1.290776

1.512136

1.731690

p2 

h2 15.9
MWth

125.8 MW 

110.2 MW

44.0 MW
40.0 MW

32.4
MWth

75.0
MWth

(a)

135.6
MWth

p3 

h3 

60 MW

45 MW

20 MW 
10 MW

40
MWth
(b)

50
MWth

p4 

h4 

105 MW
90 MW

35 MW

20
MWth

25
MWth

(c)

45
MWth

Fig. 6. FORs of CHP units of test system 2. (a) First CHP unit (unit 2).
(b) Second CHP unit (unit 3). (c) Third CHP unit (unit 4).
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min C =C1 (p1 )+C2 (p2h2 )+C3 (p3h3 )+
C4 (p4h4 )+C5 (h5 ) (29)

The constraints are as follows:
1) Equality constraints:

{p1 + p2 + p3 + p3 = pd

h2 + h3 + h4 + h5 = hd

(30)

2) Inequality constraints which represent the FOR of the
CHP units:
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ï

ï

ï

ï

ï

ï
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ï
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ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

p2 + 0.151162791h2 - 130.6976744£ 0 h2 ³ 32.4

p2 - 125.8£ 0 h2 £ 32.4

-p2 + 1.158415842 h2 - 46.88118818£ 0

-p2 - 0.067681895 h2 + 45.07614213£ 0 h2 ³ 15.9

44- p2 £ 0 h2 £ 15.9

p3 + 0.272727272h3 - 60.00000000£ 0

-p3 - 0.250000000h3 + 20.00000000£ 0

p3 + 2.333333333h3 - 83.33333333£ 0

p4 + 0.60h4 - 105.0£ 0 h4 £ 25

-p4 + 2.20h4 - 9.0£ 0

(31)

3) The limits:

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

35£ p1 £ 135

40£ p2 £ 125.8

10£ p3 £ 60

35£ p2 £ 105

0£ h2 £ 135.6
0£ h3 £ 55
0£ h4 £ 45
0£ h5 £ 60

(32)

The computation time to solve the above optimization
problem using SFS is 10.76 s, 10.74 s, and 10.83 s for cases
1, 2, and 3, respectively, which is considered reasonable.
The characteristic curve of the SFS convergence for case 1
of test system 2 is shown in Fig. 7. For the second test sys‐
tem, the results achieved by the proposed SFS technique
will be compared with those results obtained using GA [32],
RCGA [15], HS [32], classic PSO (CPSO [17], TVAC-PSO
[17], COA [28], GSA [26], RCGA-IMM [14], CSA [27],
IWO [34], FA [39], DE, ABC, and SARGA. The results ob‐
tained for this system using SFS and the other techniques
(as reported in literature), are summarized in Tables Ⅲ -Ⅴ
for the three cases, respectively. Again, as can be observed
from these tables, the SFS technique is able to obtain the
lowest possible minimum cost with small computation time.

The results summarized in Tables III-V show that the SFS
solver outperforms many other methods in terms of the total
cost CT, but presents the same best values using the rest of
the methods presented in the tables.

Figure 8 illustrates the comparisons of convergence char‐
acteristics of SFS and other nine algorithms for case 2 of
test system 2. It shows that the SFS has fast convergence,
which is one of the best algorithms used in the comparison.
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Fig. 7. Convergence characteristics of SFS algorithm for case 1 of test sys‐
tem 2.

TABLE III
COMPARISON OF CHPED RESULTS OF TEST SYSTEM 2 FOR CASE 1

Algorithm

GA [32]

RCGA [15]

HS [32]

CPSO [17]

IWO [34]

FA [39]

TVAC-PSO [17]

COA [28]

SFS

p1 (MW)

135.0000

134.9904

134.7400

135.0000

134.7300

134.7400

135.0000

135.0000

135.0000

p2 (MW)

70.8100

49.9525

48.2000

40.7309

40.0000

40.0000

41.4019

40.7687

40.7689

p3 (MW)

10.8400

25.0827

16.2300

19.2728

20.8600

20.2500

18.5981

19.2313

19.2311

p4 (MW)

83.2800

89.9744

100.8500

105.0000

104.4100

105.0000

105.0000

105.0000

105.0000

h2 (MWth)

80.5400

73.5089

81.0900

64.4003

75.0000

75.0000

73.3562

73.5956

73.5955

h3 (MWth)

39.8100

35.8519

23.9200

26.4119

37.6000

27.8700

37.4295

36.7760

36.7766

h4 (MWth)

0.0000

1.2916

6.2900

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

h5 (MWth)

29.6400

39.3476

38.7000

59.1955

37.4000

47.1200

39.2143

39.6284

39.6279

Total cost ($/h)

13779.50

13776.14

13723.20

13692.52

13683.65

13683.22

13672.89

13672.83

13672.83
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Fig. 8. Comparison of convergence characteristics of SFS and other algo‐
rithms of test system 2 for case 2.

The advantages of SFS can be summarized as follows:
1) From comparisons with the reported best cost results

obtained by many other solvers, SFS can reach all best solu‐
tions reported in literature for all test cases investigated in
the paper. This indicates that the algorithm is capable of
overcoming the local minima of the problem found by some
other algorithms.

2) The algorithm demonstrates robust behavior when its
user-supplied parameters are changed or when the number of
decision variables changes.

3) Shorter computation time for the same best solution
can be achieved using the SFS by the proper selection of its
parameters.

4) The algorithm guarantees fast convergence and accura‐
cy in smaller numbers of iterations compared to many other
solvers.

5) The SFS has uncomplicated mathematical operations.

V. CONCLUSION AND RECOMMENDATION

This paper presents the application of the SFS algorithm
to solve the CHPED optimization problem which is current‐
ly a crucial issue in power system operations. The SFS tech‐
nique is among the promising and powerful global optimiza‐
tion solvers and can outperform some present well-known
metaheuristic optimization techniques. The CHPED formula‐
tion is a non-convex non-linear optimization problem that
models concurrent production of both electrical power and

TABLE IV
COMPARISON OF CHPED RESULTS OF TEST SYSTEM 2 FOR CASE 2

Algorithm

GA [32]

HS [32]

IWO [34]

CPSO [17]

FA [39]

TVAC-PSO [17]

GSA [26]

COA [28]

CSA [27]

DE

ABC

SARGA

SFS

p1 (MW)

119.2200

134.6700

134.5900

135.0000

134.8100

135.0000

135.0000

135.0000

135.0000

135.0000

135.0000

135.0000

135.0000

p2 (MW)

45.1200

52.9900

40.0000

40.3446

40.0000

40.0118

39.9998

40.0000

40.0000

40.0000

40.0488

40.2096

40.0000

p3 (MW)

15.8200

10.1100

10.9400

10.0506

10.0000

10.0391

10.0000

10.0000

10.0000

10.0000

16.2528

10.2792

10.0000

p4 (MW)

69.8900

52.2300

64.4700

64.6060

65.1800

64.9491

64.9807

64.9910

65.0000

64.9998

58.7008

64.5112

65.0000

h2 (MWth)

78.9400

85.6900

75.0000

70.9318

75.0000

74.8263

74.9844

75.0000

75.0000

75.0000

74.3491

71.9024

75.0000

h3 (MWth)

22.6300

39.7300

38.9800

39.9918

40.0000

39.8443

40.0000

40.0000

40.0000

39.9998

42.6795

38.8834

40.0000

h4 (MWth)

18.4000

4.1800

8.8100

4.0773

16.9700

16.1867

17.8939

14.4001

14.4046

14.3984

18.7334

16.0870

14.4043

h5 (MWth)

54.9900

45.4000

52.2100

60.0000

43.0200

44.1428

42.1095

45.6000

45.5954

45.6018

39.2381

48.1273

45.5957

Total cost ($/h)

12327.37

12284.45

12134.33

12132.86

12119.86

12117.39

12117.37

12116.60

12116.60

12116.61

12178.49

12123.81

12116.60

TABLE V
COMPARISON OF CHPED RESULTS OF TEST SYSTEM 2 FOR CASE 3

Algorithm

GA [32]

HS [32]

CPSO [35]

RCGA-IMM [14]

TVAC-PSO [17]

COA [28]

CSA [27]

SFS

p1 (MW)

37.9800

41.4100

35.5972

42.1660

42.1433

42.1497

42.2652

42.1454

p2 (MW)

76.3900

66.6100

57.3554

64.6523

64.6271

64.6342

64.7630

64.6294

p3 (MW)

10.4100

10.5900

10.0070

10.0000

10.0001

10.0000

10.0112

10.0000

p4 (MW)

35.0300

41.3900

57.0587

43.1817

43.2295

43.2161

42.9706

43.2252

h2 (MWth)

106.0000

97.7300

89.9767

96.2810

96.2593

96.2654

96.3766

96.2613

h3 (MWth)

38.3700

40.2300

40.0025

40.0000

40.0001

40.0000

40.0005

40.0000

h4 (MWth)

15.8400

22.8300

30.0232

23.7190

23.7404

23.7346

23.6230

23.7387

h5 (MWth)

59.9700

59.2100

60.0000

60.0000

60.0000

60.0000

59.9990

60.0000

Total cost ($/h)

11837.40

11810.88

11781.37

11758.64

11758.06

11758.06

11758.09

11758.06
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thermal energy, whose objective is minimizing the produc‐
tion cost of heat and power generation units while fulfilling
various inequality and equality constraints and interdepen‐
dent limits. The equality and inequality constraints are han‐
dled in this paper by employing penalty parameters, which
are able to penalize infeasible solution during the iterative
process, where the constrained CHPED problem is trans‐
formed into an unconstrained one. The algorithm has been
tested on two different well-known test systems used in the
literature of CHPED. The SFS-based results are compared
with those obtained by many other commonly used and effi‐
cient global optimization techniques. The results have veri‐
fied that the optimal solutions obtained using the SFS algo‐
rithm perform better than many of these frequently used
methods. It is also revealed that the optimal SFS-based solu‐
tion has lowered the system operation costs and achieves the
best feasible solution obtained by the rest of other optimiza‐
tion techniques reported in literature. The proposed algo‐
rithm is robust in obtaining the best reported feasible solu‐
tions for different systems and case studies, and has accom‐
plished improved near-global optimal solutions with very rea‐
sonable computation time.

For further work, a variety of ideas can be recommended
such as study cases with higher dimension, using SFS to
solve optimal power flow (OPF) incorporating CHP units, re‐
newable energy resources in the CHPED problem, applica‐
tion of SFS to the CHPED problem with valve-point effects
of thermal power units, gas emission levels in the objective
function for environmental concerns, and multi-objective
CHPED problems, etc.
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