Abstract:The widespread penetration of wind power has introduced challenges in managing the rotor angle stability characteristics of the power system, affecting both small- and large-disturbance rotor angle stabilities due to its uncertain steady-state power output and inverter-based grid interfacing. Traditionally, the two stability criteria are separately analyzed and improved via preventive control, e.g., generation rescheduling. However, they may have conflicting relationship during the preventive control optimization. Therefore, this paper firstly integrates both small- and large-disturbance rotor angle stabilities and proposes an optimization model for preventive generation rescheduling to simultaneously improve them while considering wind power uncertainty. The stability constraints are linearized using trajectory sensitivity analysis, while the wind power fluctuation is represented by employing a scenario-based Taguchi’s orthogonal array testing (TOAT) method. An iterative solution method is proposed to efficiently solve the optimization model. The proposed optimization model is established on the New England 10-machine 39-bus system and a large Nordic system, demonstrating its robustness and effectiveness in addressing wind power fluctuations.