Abstract:The virtual synchronous generator (VSG), utilized as a control strategy for grid-forming inverters, is an effective method of providing inertia and voltage support to the grid. However, the VSG exhibits limited capabilities in low-voltage ride-through (LVRT) mode. Specifically,the slow response of the power loop poses challenges for VSG in grid voltage support and increases the risk of overcurrent, potentially violating present grid codes. This paper reveals the mechanism behind the delayed response speed of VSG control during the grid faults. On this basis, a compound compensation control strategy is proposed for improving the LVRT capability of the VSG, which incorporates adaptive frequency feedforward compensation (AFFC), direct power angle compensation (DPAC), internal potential compensation (IPC), and transient virtual impedance (TVI), effectively expediting the response speed and reducing transient current. Furthermore, the proposed control strategy ensures that the VSG operates smoothly back to its normal control state following the restoration from the grid faults. Subsequently, a large-signal model is developed to facilitate parameter design and stability analysis, which incorporates grid codes and TVI. Finally, the small-signal stability analysis and simulation and experimental results prove the correctness of the theoretical analysis and the effectiveness of the proposed control strategy.