Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Stability and Dynamic Analysis of PMSG-based Wind Generation System Considering Torsional Oscillation and Virtual Inertia Control
Author:
Affiliation:

Key Laboratory of Control of Power Transmission and Conversion Ministry of Education, Shanghai Jiao Tong University, Shanghai, China

Fund Project:

This work was supported by the National Key R&D Program of China (No. 2022YFB2402800).

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
    Abstract:

    Most permanent magnet synchronous generator (PMSG) based wind generation systems currently employ grid-following control, relying on a phase-locked loop (PLL) for grid connection. However, it leads to a lack of inertia support in the system. To address this, the virtual inertia control (VIC) is crucial for improvement, yet it introduces potential instability due to torsional oscillation interaction with PLL and low-frequency oscillations, which is an underexplored area. This paper presents a comprehensive analysis of the grid-connected PMSG-based wind generation system. It confirms the necessity of employing a full-order model for studying stability on the quasi-electromechanical timescale (QET) by a comparison with the reduced-order model. Then, a comprehensive modal analysis is conducted to analyze the effect of VIC parameters, shaft inertia time constant, PLL parameters, and torsional oscillation damping (TOD) controller gain on the interaction of QET oscillations under two typical control strategies. The occurrence of interaction and mode conversion is observed when the oscillation frequency and root loci of the torsional, PLL, and low-frequency oscillations are close. Finally, a theoretical analysis is validated via simulation verification in Simulink. These findings offer a valuable guidance for industrial PMSG applications considering VIC.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 16,2024
  • Revised:June 02,2024
  • Online: May 27,2025