Abstract:Peer-to-peer (P2P) energy trading provides a promising solution for integrating distributed microgrids (MGs). However, most existing research works on P2P energy trading among MGs ignore the influence of the dynamic network usage fees imposed by the distribution system operator (DSO). Therefore, a method of P2P energy trading among MGs based on the optimal dynamic network usage fees is proposed in this paper to balance the benefits of DSO. The interaction between DSO and MG is formulated as a Stackelberg game, in which the existence and uniqueness of optimal dynamic network usage fees are proven. Additionally, the optimal dynamic network usage fees are obtained by transforming the bi-level problem into single-level mixed-integer quadratic programming using Karush-Kuhn-Tucker conditions. Furthermore, the underlying relationship among optimal dynamic network usage fees, electrical distance, and power flow is revealed, and the mechanism of the optimal dynamic network usage fee can further enhance P2P energy trading among MGs. Finally, simulation results on an enhanced IEEE 33-bus system demonstrate that the proposed mechanism achieves a 17.08% reduction in operation costs for MG while increasing DSO revenue by 15.36%.