Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Global optimal polynomial approximation for parametric problems in power systems
Author:
Affiliation:

1. College of Electrical Engineering, Zhejiang University, Hangzhou, China 2. Department of Electrical and Electronics Engineering, University of Bath, Bath, U.K. 3. Department of Electrical and Computer Engineering, University of Macau, Macau, China

Fund Project:

This work is supported by National Nature Science Foundation of China (No. 51777184).

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
    Abstract:

    The influence of parameters on system states for parametric problems in power systems is to be evaluated. These parameters could be renewable generation outputs, load factor, etc. Polynomial approximation has been applied to express the nonlinear relationship between system states and parameters, governed by the nonlinear and implicit equations. Usually, sampling-based methods are applied, e.g., data fitting methods and sensitivity methods, etc. However, the accuracy and stability of these methods are not guaranteed. This paper proposes an innovative method based on Galerkin method, providing global optimal approximation. Compared to traditional methods, this method enjoys high accuracy and stability. IEEE 9-bus system is used to illustrate its effectiveness, and two additional studies including a 1648-bus system are performed to show its applications to power system analysis.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Online: May 14,2019