Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems
CSTR:
Author:
Affiliation:

1. Applied Superconductivity Laboratory, Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721302, India

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Due to interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage (SMES), for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities. In addition, SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system. Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 08,2019
  • Published:
Article QR Code