Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

LCL-resonance damping strategies for grid-connected inverters with LCL filters: a comprehensive review
Author:
Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Fund Project:

This work was supported by National Natural Science Foundation of China (No. 51477077).

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
    Abstract:

    Grid-connected LCL-filtered inverters are commonly used for distributed power generators. The LCL resonance should be treated properly. Recently, many strategies have been used to damp the resonance, but the relationships between different damping strategies have not been thoroughly investigated. Thus, this study analyses the essential mechanisms of LCL-resonance damping and reviews state-of-the-art resonance damping strategies. Existing resonance damping strategies are classified into those with single-state and multi-state feedback. Singlestate feedback strategies damp the LCL resonance using feedback of a voltage or current state at the resonance frequency. Multi-state feedback strategies are summarized as zero-placement and pole-placement strategies, where the zero-placement strategy configures the zeros of a novel state combined by multi-state feedback, while the poleplacement strategy aims to assign the closed-loop poles freely. Based on these mechanisms, an investigation of single-state and multi-state feedback is presented, including detailed comparisons of the existing strategies. Finally, some future research directions that can improve LCL-filtered inverter performance and minimize their implementation costs are summarized.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Online: March 20,2018