Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Real-time anomaly detection for very short-term load forecasting
Author:
Affiliation:

1. School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China; 2. Department of Systems Engineering and Engineering Management, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; 3. Brookhaven National Laboratory, Upton, NY 11973, USA

Fund Project:

The work was supported in part by the National Natural Science Foundation of China (No. 71701035), and the US Department of Energy, Cybersecurity for Energy Delivery Systems (CEDS) Program (No. M616000124).

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
    Abstract:

    Although the recent load information is critical to very short-term load forecasting (VSTLF), power companies often have difficulties in collecting the most recent load values accurately and timely for VSTLF applications. This paper tackles the problem of real-time anomaly detection in most recent load information used by VSTLF. This paper proposes a model-based anomaly detection method that consists of two components, a dynamic regression model and an adaptive anomaly threshold. The case study is developed using the data from ISO New England. This paper demonstrates that the proposed method significantly outperforms three other anomaly detection methods including two methods commonly used in the field and one state-of-the-art method used by a winning team of the Global Energy Forecasting Competition 2014. Finally, a general anomaly detection framework is proposed for the future research.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Online: March 20,2018