Journal of Modern Power Systems and Clean Energy

ISSN 2196-5625 CN 32-1884/TK

Doubly-fed Deep Learning Method for Bad Data Identification in Linear State Estimation
Affiliation:

GEIRI North America, San Jose, CA 95134, USA

Fund Project:

This work was supported by the Science and Technology Program of State Grid Corporation of China under project “AI based oscillation detection and control” (No. SGJS0000DKJS1801231).

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
    Abstract:

    With more data-driven applications introduced in wide-area monitoring systems (WAMS), data quality of phasor measurement units (PMUs) becomes one of the fundamental requirements for ensuring reliable WAMS applications. This paper proposes a doubly-fed deep learning method for bad data identification in linear state estimation, which can: ① identify bad data under both steady states and contingencies; ② achieve higher accuracy than conventional pre-filtering approaches; ③ reduce iteration burden for linear state estimation; ④ efficiently identify bad data in a parallelizable scheme. The proposed method consists of four key steps: ① preprocessing filter; ② online training of short-term deep neural network; ③ offline training of long-term deep neural network; ④ a decision merger. Through delicate design and comprehensive training, the proposed method can effectively differentiate the bad data from event data without relying on real-time topology information. An IEEE 39-bus system simulated by DSATools TSAT and a provincial electric power system with real PMU data collected are used to verify the proposed method. Multiple test scenarios are applied, which include steady states, three-phase-to-ground faults with (un)successful auto-reclosing, low-frequency oscillation, and low-frequency oscillation with simultaneous three-phase-to-ground faults. The proposed method demonstrates satisfactory performance during both the training session and the testing session.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 28,2020
  • Online: December 03,2020