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A Robust Segmented Mixed Effect Regression
Model for Baseline Electricity Consumption

Forecasting
Xiaoyang Zhou, Yuanqi Gao, Weixin Yao, and Nanpeng Yu

Abstract——Renewable energy production has been surging
around the world in recent years. To mitigate the increasing un‐
certainty and intermittency of the renewable generation, proac‐
tive demand response algorithms and programs are proposed
and developed to further improve the utilization of load flexibil‐
ity and increase the efficiency of power system operation. One
of the biggest challenges to efficient control and operation of de‐
mand response resources is how to forecast the baseline electric‐
ity consumption and estimate the load impact from demand re‐
sponse resources accurately. In this paper, we propose a mixed
effect segmented regression model and a new robust estimate
for forecasting the baseline electricity consumption in Southern
California, USA, by combining the ideas of random effect re‐
gression model, segmented regression model, and the least
trimmed squares estimate. Since the log-likelihood of the consid‐
ered model is not differentiable at breakpoints, we propose a
new backfitting algorithm to estimate the unknown parameters.
The estimation performance of the new estimation procedure
has been demonstrated with both simulation studies and the re‐
al data application for the electric load baseline forecasting in
Southern California.

Index Terms——Segmented regression model, mixed effects,
trimmed maximum likelihood, demand response, electric load.

I. INTRODUCTION

THE renewable energy sector has experienced exponen‐
tial growth in the past five to ten years. The global an‐

nual growth rates of solar photovoltaic and wind energy are
42% and 17% from 2010 through 2015, respectively [1].
The renewable penetration level in certain parts of the world
is much higher than the global average penetration level. For
example, the renewable energy penetration level in Califor‐
nia reached 30% in 2017. The recently passed California

Senate Bill No. 100 will further boost renewable penetration
level up to 60% by 2030 and 100% by 2045. To mitigate the
increasing uncertainty and intermittency of renewable genera‐
tion, demand response resources are in critical need. In the
past ten years, traditional and passive price-based and incen‐
tive-based demand response programs have been implement‐
ed throughout the USA. In recent years, proactive demand
response algorithms and programs are proposed and devel‐
oped to improve the utilization of load flexibility and dis‐
patchability further [2]. Accurate load impact forecasting is
needed to leverage the load flexibility from the demand re‐
sponse resources effectively. The load impact from a de‐
mand response resource is defined as the difference between
load baselines and metered load when a demand response
event is triggered. In practice, it is very challenging to devel‐
op a good estimation of the load baseline which represents
the electric load that would have occurred without demand
response event [3].

A sound baseline estimation methodology should represent
an appropriate tradeoff between simplicity and accuracy. The
existing baseline methodology can be categorized into two
types: Type-I and Type-II. In Type-I methodology, the base‐
line is estimated by using a similar day-based algorithm,
which depends on historical interval meter data and similari‐
ty metrics such as weather and calendar. Simplicity is the
most significant advantage of Type-I methodology [4], [5].
In Type-II methodology, more sophisticated statistical meth‐
ods are adopted to estimate and forecast the baseline electric‐
ity consumption. Type-II methodology typically yields better
forecasting accuracy and is undergoing rapid development. It
can be further divided into three groups: statistical methods,
machine learning/deep learning methods, and hybrid meth‐
ods. In the first group, [6] proposes a refined multiple linear
regression model. Reference [7] proposes a method to coher‐
ently convert a set of lower-level node forecasting to aggre‐
gate nodes using empirical copula and Monte-Carlo sam‐
pling. In the same vein, [8] proposes an aggregation of ran‐
dom forest load forecasting framework. The second group
utilizes deep learning algorithms. Reference [9] proposes
support vector regressions models to forecast the demand re‐
sponse baseline. In [10], an ensemble ResNet deep neural
network model is proposed. The sequence-to-sequence recur‐
rent neural network with attention mechanism is adopted in
[11]. In the third group, hybrid methods have been devel‐
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oped, in which more than one forecasting algorithms serve
as building blocks for an overall model. Reference [12] pro‐
poses a cooperative quantile regression forest and multivari‐
ate quantile regression framework. Reference [13] proposes
a two-level hybrid ensemble of deep belief network model.

There are several limitations with the existing approaches.
First, some of the methods do not exploit the structure of
the forecasting problem effectively. For example, the seg‐
mented nature of calendar variables on the load profile is
not well addressed. Second, deep learning based forecasting
algorithms are typically computationally expensive to train.
In addition, they yield un-interpretable results and can be
sensitive to the selection of hyperparameters. Third, hybrid
methods are generally complicated to build, thus can be er‐
ror-prone to implement and benchmark. Lastly, most of the
existing work build and train a separate model for each time
series. This significantly limits the scalability of model, espe‐
cially for large service territories operated by electric utilities.

In this paper, we propose a mixed effect segmented regres‐
sion (MESR) model, which is a Type-II methodology, to
forecast the hourly electric load baseline in Southern Califor‐
nia, USA at the 220 kV transformer bank level. One com‐
monly used method for electric power demand forecasting at
each hour is the multiple linear regression with hour as a cat‐
egorical variable and weather data as continuous covariates.
An alternative model for hour is to include it as a linear pre‐
dictor. However, it is expected that the linear effect of hour
on electric demand does not hold in the whole range of
time. To this end, we propose to model the hour effect by a
segmented regression model [14]-[17], which can be consid‐
ered as a compromise between modelling the hour as a glob‐
al linear predictor and a categorical variable. The nonlinear
relationship with breakpoints is piece-wise, segmented, bro‐
ken-line, or multi-phased. The breakpoints are also called
change-points, transition-points or switch-points in some ap‐
plications. Using a segmented regression model for the co‐
variate hour, the effect on the electric consumption changes
continuously across time so that we can borrow the informa‐
tion from other hours when estimating the impact of hour.
The estimated breakpoints can also tell us how the linear ef‐
fect of hour changes across different segmented areas. Seg‐
mented regression models have been widely used in many ar‐
eas. In medication, segmented regression is a powerful statis‐
tical tool for estimating the intervention effects of interrupt‐
ed time series studies [18]. The segmented regression is also
used to identify the changes in the recent trend of cancer
mortality and incidence data analysis [19]. In ecology area,
the segmented regression is a widely used statistical tool to
model ecological thresholds [20]. For the geometric purpose,
the segmented regression statistically models the trends at
groundwater levels [21]. Many other examples with piece‐
wise linear terms have been studied in the literature includ‐
ing mortality studies [22], Stanford heart transplant data
[23], and mouse leukemia [24]. Note that electric consump‐
tion data are essentially longitudinal/panel data. They exhib‐
its very strong spatio-temporal dependencies [25]. To incor‐
porate the correlation among the observations and the indi‐

vidual-specific heterogeneity from each transformer bank,
we propose to use the random effect regression model
[26], [27].

Note that it is not trivial to compute the maximum likeli‐
hood estimate (MLE) for the MESR, since its log-likelihood
is not differentiable at breakpoints. Many standard computa‐
tion algorithms such as the Newton-Raphson algorithm can
not be used directly. In this paper, we propose a backfitting
algorithm to combine the segmented regression estimation
method proposed in [28] and the mixed effect regression esti‐
mation method proposed in [29] to maximize the non-differ‐
entiable log-likelihood of the mixed effect segmented regres‐
sion model. Note that the MLE is sensitive to outliers,
which is the case of our electric consumption data collected
in the Southern California. We further propose a robust esti‐
mation procedure for the considered model by extending the
idea of the least trimmed squares (LTS) estimate [30]. Simu‐
lation studies demonstrate the effectiveness of the proposed
estimation procedures. The LTS also provides much better
forecasting performance than the standard MLE for the test‐
ing data when forecasting the hourly electric power con‐
sumption in Southern California.

The rest of the paper is organized as follows. Section II in‐
troduces the MESR and describes the proposed robust esti‐
mation algorithms. Section III illustrates the finite sample
performance of the proposed method using a simulation
study. In Section IV, we apply the new estimation procedure
to forecast the hourly electric power demand in Southern
California, USA. Section V concludes the paper with some
discussions.

II. MESR AND PROPOSED ROBUST ESTIMATION ALGORITHM

Given a random sample {yijx ijs ijzij}i = 12n j =
12ni, where n is the number of subjects; ni is the num‐
ber of observations collected for the ith subject; yij is the re‐
sponse variable; x ij is the p-dimensional fixed-effect covari‐
ate; s ij is the q-dimensional random-effect covariate; and zij

is the breakpoint variable with the breakpoints {φk}k =
12l. The proposed MESR model for the load baseline
estimation can be written as:

yij = x T
ijϕ+ sT

ijγ i + β0 zij +∑
k = 1

l

βk (zij - φk)+ + εij (1)

where ϕ is the regression coefficient for the random effect
covariates; β0 and βk are the regression coefficients for the
breakpoint variables; and the quantities with a subscript
“+” means taking the positive part. For example, t+ equals t
if t ³ 0 and 0 otherwise; γ i Nq (0Σγ); ε i = (εi1εi2εini

)~

Nni
(0Σε). In this paper, we assume that Σε = σ 2 Ini

, where σ is

the standard deviation of the error variable; and Ini
is the ni ´

ni identity matrix. The MESR (1) consists of three parts:
multiple linear regression x T

ij ϕ, random effects sT
ij γ i, and seg‐

mented regression β0 zij +∑
k = 1

l

βk (zij - φk)+, which models the

heterogeneous linear effect of zij on yij across different areas
of the breakpoint variable. βk measures the difference of
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slopes (linear effect of zij on yij) before and after the break‐
point φk. We mainly focus on the situation where the seg‐
mented parts are fixed effects. But the proposed estimation
procedure can be extended to the situation where the seg‐
mented parts also contain random effects [31]-[33].

Suppose that y i = (yi1yi2yini
)T X i = (x i1x i2x ini

)T S i =
(s i1s i2s ini

)T, and Z i = (z *
i1z *

i2z *
ini

)T, where z *
ij = (zij(zij -

φ1)+(zij - φl)+)
T. Then, (1) can be rewritten in matrix for‐

mat as:

y i =X iϕ+ S iγ i +Z i β + ε i (2)

where β = (β0β1βl)
T. Based on (2), E(y i|X iZ iS i)=X iϕ+

Z i β and var(y i|X iZ iS i)= S iΣγS
T
i + σ 2

ε Ini
Σ i, where E(×) and

var(×) denote conditional expectation and conditional varianc‐
es, respectively. Therefore, the random effects γ i make the
observations within each correlated subject. The log-likeli‐
hood function of {yijx ijs ijzij}i = 12n j = 12ni is:

l(θ)µ∑
i = 1

n

ln(|Σ i|
-1/2)-

1
2∑i = 1

n

(y i -X iϕ-Z i β)TΣ -1
i (y i -X iϕ-Z i β)

(3)

where θ collects all the unknown parameters {ϕβφσΣγ} in
model (1). Unlike the traditional mixed effect model, maxi‐
mizing (3) is not trivial since it is not differentiable at φk.
We propose a backfitting algorithm to maximize (3) by alter‐
nately updating the segmented regression part and the linear
mixed effect part. Next, we discuss in detail how to perform
such two estimation procedures.

A. Estimation of Breakpoints

Given the estimate {ϕΣ̂ i}, (1) will be a segmented regres‐
sion model. The breakpoints and slopes in segmented regres‐
sion can be estimated through many ways such as regression
spline as well as Bayesian Markov chain Monte Carlo (MC‐
MC) methods [34], [35]. We will extend the linearization
technique proposed in [28] to MESR (1) due to its simplici‐
ty of computation. According to the definition of break‐
points, the log-likelihood is not differentiable at φk. The
breakpoint estimation can be performed via a first-order Tay‐
lor expansion of (zij - φk)+ around an initial value φ(0)

k :

(zij - φk)+ » (zij - φ(0)
k )+ + (φk - φ(0)

k )(-1)I(zij >φ(0)
k ) (4)

where I(×) is the indicator function. It equals 1 if the condi‐
tion inside the parenthesis is true and 0 otherwise; (-1)I(zij >
φ(0)

k ) is the first derivative of (zij - φk)+ assessed in φ(0)
k .

Let v ij = ((-1)I(zij > φ( )0
1 )(-1)I(zij > φ( )0

2 )(-1)I(zij > φ(0)
l ))T,

z͂ ij = (zij(zij - φ( )0
1 )+(zij - φ( )0

2 )+(zij - φ(0)
l )+)

T, and δk = βk (φk -
φ(0)

k ). Define V i = (v i1v i2v ini
)T, δ= (δ1δ2δl)

T, and Z͂ i =

(z͂ i1z͂ i2z͂ ini
)T. Given the estimate {ϕΣ̂ i}, the log-likelihood

(3) can be simplified as:

l1 (β δ)µ-
1
2∑i = 1

n

( y͂ i - Z͂ i β -V iδ)T Σ̂ -1
i ( y͂ i - Z͂ i β -V iδ) (5)

where y͂ i = y i -X i ϕ. Therefore, β and δ in (5) can be easily
found by weighted least squares estimate. Note that φk =
(δk /βk)+ φ(0)

k . The iterative algorithm will terminate at δk = 0.
Given the estimate {ϕΣ̂ i}, the algorithm to estimate the

breakpoints is summarized in Algorithm 1.

B. Estimation of Mixed Effect Regression Models

In this sub-section, we discuss how to maximize (3) given
the estimate β and φ, where φ= (φ1φ2φl)

T. Let Ẑ i be the
estimate of Z i after replacing φk by φ̂k. Plugging in the esti‐
mate {Ẑ iβ} into the model (1), we can obtain:

y*
i =X iϕ+ S iγ i + ε i (6)

where y*
i = y i - Ẑ i β. Therefore, the model (6) is simply a tra‐

ditional mixed effect regression model. We propose to em‐
ploy the penalized weighted least square (PWLS) method to
estimate the unknown parameters in (6). More details of
computing the linear mixed effect regression model are giv‐
en in [29], which are also implemented in R package lme4.

C. Estimation of Mixed Effect Breakpoints

By combining the estimation procedures in Section II-A
and II-B, we propose Algorithm 2 to maximize the log-likeli‐
hood (3) for the model (2).

D. Estimation of Robust Segmented Mixed Effect Regression

It is well known that the MLE is sensitive to outliers and
might give misleading results when there are outliers in the
data, which is the case for our collected electric power de‐
mand data in Southern California. More details will be given
in Section IV. The issue of outlier is well recognized in the
field of load forecasting, and is typically solved using robust
regression algorithms. For example, [36] considers Huber’s
robust regression; [37] advocates the use of L1 regression
model. In the statistics literature, many robust regression
methods have been proposed, although not all of them are in‐
vestigated in the load forecasting literature, e.g., M-estimates
[38], R-estimates [39], least median of squares (LMS) esti‐
mates [40], LTS estimates [30], S-estimates [41], MM-esti‐
mates [42], robust and efficient weighted least squares esti‐
mator (REWLSE) [43], mean shift method [44]-[46]. Refer‐
ence [47] provides a good review of some commonly used

Algorithm 1: segmented regression estimation

1. Set initial values of all breakpoints φ(0)
k for k = 12...l, and calculate the

variable Z͂i and the variable Vi

2. Repeat
3. Fit the regression model of y͂i on Z͂i and Vi by maximizing the log-like

lihood (5). Update the breakpoint with equation φ(s+ 1)
k = ( )δ(s)

k /β (s)
k +φ(s)

k ,
where φ(s)

k is the estimate of φk at the sth iteration
4. Until converge

Algorithm 2: MLE

1. Set initial values of breakpoint φ(0)
k and β(0)

2. Repeat
3. Given current breakpoint values φ(s)

k and slopes β(s), calculate y*(s)
i = yi -

Ẑ (s)
i β(s)

4. Fit mixed effect regression model by the PWLS estimation procedure
introduced in Section II-B to obtain covariance matrix Σ (s)

r and the
fixed effect regression estimate ϕ(s)

5. Calculate y͂(s)
i = yi -Xi ϕ

(s)

6. Fit segmented regression model with y͂(s)
i and Σ (s)

r using Algorithm 1 and
update segmented regression parameter estimate to φ(s+ 1) and β(s+ 1)

7. Until converge
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robust regression estimation methods. Next, we propose the
idea of least trimmed squares estimate [30] to provide a ro‐
bust estimate of the model (1). Given an integer trimming
parameter h£N, where N is the total number of training sam‐
ples, the least trimmed squares minimize the sum of the
smallest h squared residuals with objective function:

∑
k = 1

h

r 2
(k) (7)

where r 2
(k)Î[r 2

(1)r 2
(N)] are the ordered squared residuals {yij -

ŷiji = 12n j = 12ni} with ŷij = x T
ijϕ+ sT

ijγ i + β̂0 zij +

∑
k = 1

l

β̂k (zij - φ̂k)+. The robust MESR estimation based on LTS

is described in Algorithm 3.

To increase the chance of finding the global minimum,
one might run Algorithm 3 from many random subsamples
and choose the solution which has the smallest trimmed
squares. Let r be the dimension of θ. The initial sample
size h* can be any small number larger than r as long as the
initial parameter estimate θ(0) can be computed based on the
subsample. The maximum breakpoint of LTS [48], i. e., the
smallest fraction of contamination that can cause the estima‐
tor to take arbitrary large values, is 0.5, which is attained
when h=[(N + r + 1)/2], where [·] means rounding to the near‐
est integer. If we have the prior that the proportion of outli‐
ers is no more than α, we can also set h=[N(1- α)+ 1], where
α is he trimming proportion. In practice, one might try sever‐
al α values to evaluate LTS and check how the estimate be‐
haves with different trimming proportions [49] - [51]. In our
real data application, we use a validation data to choose the
trimming proportion.

III. SIMULATION STUDY

In this section, we use a simulation study to illustrate the
performance of the proposed estimation procedure for the
MESR. All the computations are implemented in R. We use
R package segmented::segmented [52] for breakpoint estima‐
tion and lme4:: lmer [53] for random-effect estimation. We
generate observations {yijx ijs ijziji = 12nj = 12ni}
from the following model:

yij = ϕ0 + ϕ1 xij + γi0 + sijγi1 + β0 zij +β1 (zij - φ1)+ + β2 (zij - φ2)+ + εij

(8)

where xij Pois(10), the Poisson distribution with rate param‐
eter 10; sij Uniform(510), the uniform distribution with
lower and upper limits 5 and 10, respectively. The break‐

point variables zij are ni arithmetic sequence ranging in

(020), εij N(00.5),
é

ë
êê

ù

û
úú

γi0

γi1

N (éëê ù
û
ú

0
0


é

ë
ê

ù

û
ú

σ 2
r1 ρσr1σr2

ρσr1σr2 σ 2
r2

), with

σr1 = σr2 = 1 ρ= 0.5 i = 12n j = 12ni. The other pa‐
rameters in (8) are set to be: ϕ0 =-2.5; ϕ1 = 1.5; β0 = 1.5; β1 =
1.5; β2 =-2.5; φ1 = 6.67; and φ2 = 13.33.

We consider the following four simulation scenarios:
1) n= 50 and ni is randomly chosen in (90110).
2) n= 50 and ni is randomly chosen in (1822).
3) n= 200 and ni is randomly chosen in (450550).
4) n= 200 and ni is randomly chosen in (1822).
First, we utilize (8) to simulate the dataset without outli‐

ers. The model is estimated using MLE. In Tables I-IV, we
report the mean, median, and standard deviation (SD) for the
estimates of fixed effect regression parameters, breakpoints,
segmented regression parameters, and random effect covari‐
ance matrix, respectively, based on 500 replications.

From Tables I-IV, we can see that the proposed MLE algo‐
rithm performs well when the dataset does not contain any
outliers. Also, when the sample size increases, the SD of
each parameter estimate decreases.

Next, we simulate the dataset with outliers based on mod‐
el (8). The model parameters are estimated by both Algo‐
rithm 2 and Algorithm 3. In order to check how robust each
estimate is against the outliers, we randomly choose 5% of
each simulated data and add 30 to the response Y (the range
of Y is (1569)) and 10 to the value of X (the range of X is
(010)). When applying LTS, we need to choose the trim‐
ming proportion α, which has long been a difficult problem.
However, LTS can provide a robust model estimate as long
as the proportion of outliers is less than α but with low effi‐
ciency if α is too large. Usually, a conservative choice of α
is recommended in practice. In this paper, we report the re‐
sults for both α= 0.1 and α= 0.2. Note that the results of
LTS will be better if α= 0.05 is used.

Algorithm 3: LTS

1. A subsample of size h* is selected randomly from the data and then the
model (1) is fitted to the subsample using Algorithm 2 of Section II-
C. Let θ(0) be the initial parameter estimate

2. Repeat
3. Based on current model parameter estimate θ(s), forecast N responses

ŷ(s)
ij , and calculate the residuals r (s)

ij = yij - ŷ(s)
ij . Rank the squared residu

als from smallest to largest and select the first h observations that cor
respond to the smallest h squared residuals

4. Fit the model (1) to the subsample selected in Step 3 using Algorithm 2
and get the model parameter estimate θ(s+ 1)

5. Until converge

TABLE I
SIMULATION RESULTS OF FIXED EFFECT PARAMETER ESTIMATES BY MLE

FOR SITUATION WITHOUT OUTLIERS

Parameter

n= 50 ni U(90110)

n= 50 ni U(1822)

n= 200, ni U(450550)

n= 200 ni U(1822)

ϕ0 =-2.5

Mean

-2.505

-2.500

-2.498

-2.491

Median

-2.508

-2.502

-2.497

-2.498

SD

0.125

0.169

0.064

0.125

ϕ1 = 1.5

Mean

1.500

1.500

1.500

1.500

Median

1.499

1.500

1.500

1.500

SD

0.002

0.005

0.001

0.004

TABLE II
SIMULATION RESULTS OF BREAKPOINTS ESTIMATES BY MLE FOR

SITUATION WITHOUT OUTLIERS

Parameter

n= 50 ni U(90110)

n= 50 ni U(1822)

n= 200 ni U(450550)

n= 200 ni U(1822)

φ1 = 6.667

Mean

6.667

6.667

6.667

6.667

Median

6.666

6.664

6.667

6.666

SD

0.022

0.053

0.006

0.023

φ2 = 13.333

Mean

13.334

13.334

13.333

13.332

Median

13.332

13.333

13.333

13.332

SD

0.012

0.034

0.003

0.023
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Tables V-VIII present the simulation results for the esti‐
mates of fixed effect regression parameters, breakpoints, seg‐
mented regression parameters, and random effect covariance
matrix, respectively, based on 200 replications. From the ta‐
bles, it is observed that the standard MLE fails to provide

the reasonable estimates of fixed effect regression parame‐
ters and random effect covariance matrix when the data con‐
tain 5% outliers while LTS can provide reasonable estimates
for all parameters with both α= 0.1 and α= 0.2.

IV. REAL DATA ANALYSIS

In this Section, we illustrate the application of the pro‐
posed estimation procedure of MESR to forecast the electric
load in Southern California, USA.

A. Data

The electric consumption data are aggregated to fifty-two
220 kV transformer banks from December 31, 2012 to No‐
vember 1, 2013 in Southern California Edison’s service terri‐
tory. The task is to build a forecasting model for the total

electricity consumption of residential customers at each 220
kV transformer bank on weekdays.

The data cleansing of the raw dataset is done in two
steps. First, we exclude daily observations for commercial
customers and remove zero-usage records from the electric
consumption data file. Second, we add daily temperature and
humidity information for each bank according to its zipcodes.

The response variable Ut is the aggregated customers’
hourly electricity consumption recorded by the smart meters.
We use the following transformation to make it comparative
among 52 subgroups:

TABLE III
SIMULATION RESULTS OF BREAKPOINT SLOPE ESTIMATES BY MLE FOR SITUATION WITHOUT OUTLIERS

Parameter

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

β0 = 1.5

Mean

1.499

1.499

1.500

1.499

Median

1.500

1.500

1.500

1.499

SD

0.006

0.013

0.001

0.010

β1 = 1.5

Mean

1.499

1.502

1.500

1.502

Median

1.499

1.502

1.500

1.501

SD

0.008

0.020

0.001

0.014

β2 =-2.5

Mean

-2.499

-2.502

-2.500

-2.501

Median

-2.499

-2.502

-2.500

-2.502

SD

0.008

0.019

0.002

0.014

TABLE IV
SIMULATION RESULTS OF RANDOM EFFECT ESTIMATES BY MLE FOR SITUATION WITHOUT OUTLIERS

Parameter

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

σr1 = 1

Mean

0.969

0.988

0.990

0.987

Median

0.959

0.988

0.991

0.990

SD

0.108

0.141

0.050

0.101

σr2 = 1

Mean

0.978

0.993

0999

0.997

Median

0.976

0.990

0.999

1.000

SD

0.101

0.096

0.056

0.068

ρ= 0.5

Mean

0.504

0.490

0.499

0.500

Median

0.503

0.501

0.499

0.506

SD

0.121

0.150

0.001

0.094

TABLE V
SIMULATION RESULTS OF FIXED EFFECT ESTIMATES BY MLE AND LTS WITH DIFFERENT α LEVELS FOR SITUATION WITH OUTLIERS

Parameter

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

Method

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

ϕ0 =-2.5

Mean

3.332

-2.535

-2.521

3.293

-2.471

-2.496

3.310

-2.502

-2.502

3.359

-2.464

-2.488

Median

3.334

-2.539

-2.522

3.298

-2.438

-2.485

3.314

-2.507

-2.505

3.417

-2.437

-2.491

SD

0.663

0.283

0.210

1.069

0.616

0.539

0.180

0.130

0.089

1.049

0.290

0.267

ϕ1 = 1.5

Mean

1.019

1.500

1.500

1.490

1.500

1.499

1.017

1.500

1.500

1.493

1.500

1.500

Median

1.017

1.500

1.500

1.487

1.500

1.500

1.017

1.500

1.500

1.496

1.500

1.499

SD

0.026

0.004

0.003

0.045

0.015

0.014

0.006

0.001

0.001

0.046

0.007

0.007
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TABLE VI
SIMULATION RESULTS OF BREAKPOINT ESTIMATES BY MLE AND LTS WITH DIFFERENT α LEVELS FOR SITUATION WITH OUTLIERS

Parameter

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

Method

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

φ1 = 6.667

Mean

6.647

6.670

6.670

6.319

6.425

6.603

6.671

6.670

6.670

6.307

6.427

6.606

Median

6.679

6.380

6.677

6.317

6.445

6.616

6.673

6.685

6.677

6.316

6.433

6.610

SD

0.546

0.755

0.415

0.204

0.185

0.170

0.172

0.293

0.166

0.209

0.082

0.076

φ2 = 13.333

Mean

13.322

13.351

13.323

12.656

13.027

13.116

13.333

13.325

13.328

12.643

13.030

13.190

Median

13.317

13.342

13.332

12.651

13.037

13.117

13.337

13.330

13.330

12.649

13.039

13.116

SD

0.324

0.519

0.283

0.139

0.237

0.145

0.098

0.166

0.094

0.144

0.118

0.067

TABLE VII
SIMULATION RESULTS OF BREAKPOINT SLOPE ESTIMATES BY MLE AND LTS WITH DIFFERENT α LEVELS FOR SITUATION WITH OUTLIERS

Parameter

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

Method

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

β0 = 1.5

Mean

1.493

1.501

1.506

1.590

1.556

1.575

1.500

1.500

1.495

1.587

1.574

1.553

Median

1.494

1.502

1.503

1.590

1.556

1.576

1.502

1.502

1.497

1.586

1.574

1.553

SD

0.109

0.123

0.070

0.039

0.027

0.029

0.035

0.054

0.022

0.037

0.014

0.014

β1 = 1.5

Mean

1.521

1.510

1.505

1.544

1.584

1.557

1.500

1.502

1.506

1.549

1.557

1.571

Median

1.518

1.500

1.501

1.536

1.564

1.557

1.499

1.500

1.505

1.544

1.556

1.566

SD

0.154

0.166

0.083

0.074

0.102

0.069

0.040

0.051

0.026

0.075

0.048

0.035

β2 =-2.5

Mean

-2.516

-2.519

-2.509

-2.610

-2.602

-2.590

-2.500

-2.499

-2.506

-2.605

-2.499

-2.506

Median

-2.522

-2.505

-2.507

-2.602

-2.580

-2.588

-2.502

-2.502

-2.499

-2.611

-2.502

-2.499

SD

0.163

0.168

0.071

0.135

0.109

0.070

0.042

0.054

0.028

0.138

0.054

0.028

TABLE VIII
SIMULATION RESULTS OF RANDOM EFFECT ESTIMATES BY MLE AND LTS WITH DIFFERENT α LEVELS FOR SITUATION WITH OUTLIERS

Parameter

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

Method

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

σr1 = 1

Mean

0.518

1.000

0.992

0.529

0.823

0.746

0.769

0.992

0.992

0.535

0.884

0.763

Median

0.379

0.993

0.998

0.529

0.825

0.744

0.897

0.990

0.989

0.531

0.848

0.763

SD

0.582

0.097

0.111

0.111

0.121

0.114

0.435

0.048

0.048

0.118

0.060

0.056

σr2 = 1

Mean

1.019

0.993

0.994

0.533

0.779

1.080

1.013

0.998

0.998

0.553

0.781

1.082

Median

1.026

1.003

0.999

0.523

0.779

1.073

1.015

0.998

0.997

0.550

0.782

1.082

SD

0.117

0.097

0.097

0.318

0.066

0.079

0.056

0.047

0.047

0.315

0.033

0.038

ρ= 0.5

Mean

0.843

0.509

0.511

0.815

0.498

0.494

0.619

0.495

0.496

0.787

0.476

0.493

Median

0.999

0.510

0.519

0.816

0.485

0.493

0.592

0.496

0.496

0.787

0.473

0.493

SD

0.612

0.115

0.107

0.158

0.066

0.079

0.272

0.050

0.049

0.148

0.085

0.071
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Lt = ln
Ut

Atotal
(9)

In (9), the transformed response variable is derived as fol‐
lows. First, we divide the aggregated usage by the total air
conditioning tonnage of a residential customer. The customer
is in the air conditioning cycling program. Second, we apply
the log-transformation. The electricity consumption is divid‐
ed by the total AC tonnage because the latter determines the
numerical magnitude of the load measurements. Since the
new response variable represents the electricity consumption
level per unit of air conditioning tonnage, the effects of oth‐
er explanatory variables are comparable among different
transformer banks, which allows to use common slopes to
simplify the model. Figure 1 shows the transformed re‐
sponse variable for a few sample banks over 5 days.

The explanatory variables are collected and listed in Table
IX. A two-day lagged electricity consumption variable is se‐
lected rather than the one-day lagged variable, because the
estimates of the load impact of the demand response resourc‐
es need to be submitted to the independent system operator
one day before the actual operations. The average tempera‐
ture and humidity are included because they are highly corre‐
lated with the electricity consumption. The duty cycle option
variable indicates the percentage of participation rate of air
conditioning load in the program, and has a substantial influ‐
ence over the load impact for air conditioning cycling de‐
mand response program. The transformer bank indicator vari‐
able B is chosen as the random effect, because it contains in‐
formation about the data from different geographic areas,
which is thus expected to be heterogeneous with different
baselines. A random effect model, assuming that B are sam‐
pled from a larger population, is able to incorporate the indi‐
vidual-specific heterogeneity of B while allowing to borrow
information across B with much smaller number of parame‐
ters (compared with one fixed effect parameter for each of
52 values of B). In addition, this allows to extend the model
to additional transformer banks.

In this paper, the training dataset is chosen as the samples
in the first 205 observed weekdays for all transformer banks.
The testing dataset consists of the samples from the 10 ob‐

served weekdays immediately following the training dataset.
The total number of testing sample is 12480.

B. Model and Result

We apply the proposed estimation procedure of MESR to
forecast the electricity consumption. Figure 2 shows the
hourly trend for average electric consumption and its fore‐
casting results for a typical day. Two breakpoints locate be‐
tween 02:00-3:00 a.m. and 06:00-08:00 p.m., respectively.

It seems that the curve corresponding to the actual con‐
sumption (after the log transformation) indicates three seg‐
ments with two breakpoints. The first breakpoint locates be‐
tween 02:00 a.m. and 03:00 a.m., and the second breakpoint
lies between 06:00 p.m. and 08:00 p.m.. We have also tried
the model with three breakpoints (one more breakpoint in
the middle segmented area), but the BIC for two breakpoints
is smaller. The forecasting curve in Fig. 2 corresponds to the
forecasted values across all transformer banks for the same
forecasting day. As shown in Fig. 2, we can see that the pro‐
posed model can forecast the actual values well and the fit‐
ted values also match the breakpoint relationship.

The observations collected over time within the same
transformer bank are correlated. The auto-correlation func‐
tion of the observation time series of each transformer bank
is shown in Fig. 3, where the time series demonstrates
strong auto-correlation patterns.

Ignoring such correlation by fixed effect model would re‐
sult in inefficient estimates and lose forecasted power. To in‐
corporate such correction, the transformer bank is treated as
random effects. Using a random effect model can also drasti‐
cally reduce the number of unknown parameters in the mod‐
el, and thus lead to more efficient parameter estimates.
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Fig. 1. Data visualization of transformed response variable Lt (shown in
the figure as ln Usagepert

) versus transformer bank indicator variable B (shown

in the figure as A_Bank) and time.
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Fig. 2. Hourly trend between average hourly electric consumption Lt

(shown in the figure as ln Usagepert
) with variable Hrt (shown in the figure as

t) averaged over all transformer bank B.

TABLE IX
SEVEN EXPLANATORY VARIABLES IN REAL DATA APPLICATION

Notation

Llag
t

Tt

Ht

Hrt

At

Atotal

B

Explanatory variable

Base e log of two-day lagged electricity consumption

Daily average ambient temperature

Humidity of the day

Hour/time of the day

Duty cycle percentage

Total AC tonnage under the same transformer bank

Indicator variable of transformer bank

Note: B is the random effect variable; and Hrt is the segmented variable.
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Next, we describe the construction of the fixed effects.
The first six explanatory variables described in Table IX,
along with their two-way and three-way interactions, are con‐
sidered as potential explanatory variables. The model vari‐
ables are selected via least absolute shrinkage and selection
operator (LASSO) regression method [54], which improves
the forecasting accuracy and interpretability of the model.
The final selected MESR is expressed as:

Lt =B + Hrt + (Hrt - φ1)+ + (Hrt - φ2)+ + Tt +Ht +At + Llag
t +

[Hrt + (Hrt - φ1)+ + (Hrt - φ2)+]Tt +[Hrt + (Hrt - φ2)+]Ht +
[Hrt + (Hrt - φ1)+ + (Hrt - φ2)+]At + (Tt +Ht)At + Tt Ht

(10)

where BN(0σ 2
A_Bank) is the normal distribution with mean

0 and variance σ 2
A_Bank. We apply both MLE and LTS algo‐

rithms to estimate the model and compare their forecasting
performances. Since the true proportion of outliers is un‐
known, three proportions α= 0.150.100.05 are selected for
LTS to fit the model (10). In addition, the proposed algo‐
rithms are compared with two benchmarks, i.e., the multiple
linear regression model [55] and the cooperative quantile re‐
gression forest (QRF)/multivariate quantile regression
(MQR) method [12]. We set the training/testing data parti‐
tioning of these benchmarks to be the same as the setup dis‐
cussed in Section IV-A. We compare their performances by
mean absolute percentage error (MAPE) and root mean
squared error (RMSE) on the testing dataset. The formula

for MAPE and RMSE are given by MAPE =
1
N∑ || yij - ŷij

yij

and RMSE =
1
N∑(yij - ŷij)

2 , where N is the total number

of testing samples. For better comparison, we also report
three quartiles of absolute percentage error (APE) and abso‐
lute error (AE).

From Tables X and XI, the proposed robust segmented
mixed effect regression model (LTS in the tables) outper‐
forms the multiple linear regression model [55] and the QRF/
MQR model [55]. The improvements are more significant in
terms of the RMSE and AE. The reason why the LTS has a
slightly higher MAPE compared with the QRF/MQR base‐
line is that the LTS produces a bit larger estimation errors
for some transformer banks with lighter loading. This results
in a higher MAPE due to the small denominator. Within the
LTS method, each evaluation criterion reaches the lowest val‐
ue when α= 0.1 and is much smaller than that of MLE. The
breakpoint estimates shown in Table XII confirm the loca‐
tions of the breakpoints shown in Fig. 2.

Table XIII displays the fixed effect and breakpoints slope
estimates for LTS with α= 0.1. The variance estimates of the
random effects and the error term are 0.0015 and 0.0052, re‐
spectively.

According to Table XIII, all the parameters are significant
with α= 0.05. When calculating the p-values, Satterthwaite
method is used for approximating degrees of freedom of the
t-distribution for the t-test statistics. The variable Hrt and its
breakpoints have both positive and negative slopes, and the
signs match the curves in Fig. 2. Also, there is a sensible
positive relationship between At and electric load Ut.

V. CONCLUSION

In this paper, we propose a robust segmented mixed effect
regression model to forecast the electric load baseline in
Southern California. When estimating unknown parameters,
we propose a backfitting algorithm by combining the ideas
of the penalized least square method for random-effects re‐
gression model and the linearization technique [28] for seg‐
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Fig. 3. Auto-correlation function of observation time series of each trans‐
former bank.

TABLE X
FORECASTING RESULTS EVALUATED BY APE FOR LAST 10 DAYS IN

OCTOBER 2013 WITH MLE COMPARED WITH LTS WITH DIFFERENT α
LEVELS

Method

GEFcom2012 [55]

QRF/MQR [12]

MLE

LTS α= 0.05

LTS α= 0.1

LTS α= 0.15

MAPE (%)

17.97

10.15

13.94

11.08

10.75

10.88

25% APE
(%)

5.95

2.36

4.55

2.78

2.46

2.55

50% APE
(%)

12.06

5.25

8.48

5.45

4.95

5.10

75% APE
(%)

19.80

10.70

13.66

9.37

8.77

9.01

TABLE XI
FORECASTING RESULTS EVALUATED BY RMSE FOR LAST 10 DAYS IN

OCTOBER 2013 WITH MLE COMPARED WITH LTS WITH DIFFERENT α
LEVELS

Method

GEFcom2012 [55]

QRF/MQR [12]

MLE

LTS α= 0.05

LTS α= 0.1

LTS α= 0.15

RMSE
(kWh)

1305.65

742.73

672.88

449.68

414.42

420.00

25% AE
(kWh)

26.92

10.01

5.78

3.98

3.65

4.75

50% AE
(kWh)

168.96

67.77

42.19

27.01

24.73

25.26

75% AE
(kWh)

684.95

298.06

164.08

97.45

86.33

88.84

TABLE XII
BREAKPOINT ESTIMATION FOR ELECTRIC POWER DEMAND DATASET VIA

MLE AND LTS WITH DIFFERENT α LEVELS

Method

MLE

LTS α= 0.05

LTS α= 0.1

LTS α= 0.15

φ1 (hour)

2.64

2.27

2.27

2.27

φ2 (hour)

20.47

20.47

20.77

20.47
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mented regression. In addition, we extend the idea of LTS to
MESR to provide a robust model estimate. Both simulation
study and real data application demonstrate the effectiveness
of the proposed new estimation procedures.

Since the model is built up with hourly data, we could al‐
so aggregate the data and construct a daily electric load mod‐
el. In this paper, we assume that the number of breakpoints
is known. If the number of breakpoints is unknown, one
could apply the selection techniques proposed by [56] - [59]
to our model. In (1), all random effects are assumed to have
a multivariate normal distribution. It will be interesting to ex‐
tend the work of [60] to relax the normality assumption of
the random effects in (1). In addition, for LTS, although an
conservation α or serval α values can be used in practice, it
requires some careful tuning of α so that LTS can have both
robustness and high efficiency. Since the response variable
by AC tonnage is normalized, it is expected that there is not
too much heterogeneity for the effects of other variables af‐
ter controlling the heterogeneity of different banks. But it is
worthy of more research trying some more complicated mod‐
els such as random slopes for all other variables and their in‐
teractions as well as nonparametric regression for hour, hu‐
midity, or temperature variables.
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