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Abstract——Utility maximization is a major priority of prosum‐
ers participating in peer-to-peer energy trading and sharing
(P2P-ETS). However, as more distributed energy resources inte‐
grate into the distribution network, the impact of the communi‐
cation link becomes significant. We present a multi-commodity
formulation that allows the dual-optimization of energy and
communication resources in P2P-ETS. On one hand, the pro‐
posed algorithm minimizes the cost of energy generation and
communication delay. On the other hand, it also maximizes the
global utility of prosumers with fair resource allocation. We
evaluate the algorithm in a variety of realistic conditions includ‐
ing a time-varying communication network with signal delay
signal loss. The results show that the convergence is achieved in
a fewer number of time steps than the previously proposed algo‐
rithms. It is further observed that the entities with a higher will‐
ingness to trade the energy acquire more satisfactions than oth‐
ers.

Index Terms——Distributed algorithm, social welfare, peer-to-
peer energy trading and sharing, multi-commodity networks,
economic dispatch, packet loss, peer-to-peer energy trading, dis‐
tributed dual-gradient (DDG).

I. INTRODUCTION

SINCE the past decade, the advances in technology have
been driving the rise of distributed energy resources

(DERs) at the community level [1]-[4]. These DERs create a
chain of independent energy producers and consumers that
coexist with capacities and demands of different energy gen‐

erations [1]. The existence of these prosumers could result in
power grid instability and unreliability if their energy supply
and demand requirements are not properly coordinated. A
common approach of energy coordination and control is uti‐
lizing distributed control algorithm to eliminate the single
point of failure in centralized control systems [5], [6].

Distributed algorithms have been proposed in the litera‐
ture for energy coordination [7] and in peer-to-peer (P2P) en‐
ergy trading [5], [8]. In these algorithms, each prosumer
keeps a local approximate value of its energy profile and
communicates this estimated value directly to its connected
neighbor. The energy profiles of all the prosumers converge
to an optimal value over a communication network [9]. In
[8] and [10], a perfect communication link is assumed be‐
tween these prosumers, hence the typical communication is‐
sues are ignored in real networks.

In practical P2P networks with digital capabilities, end-to-
end transaction may be affected by several communication-
related factors including topology, jitters, latency, reliability
and attenuation due to weather, physical environment or con‐
tingencies on the link and the number of P2P prosumers in
the network. Other factors include link capacity and message
size [11], [12]. This has been exemplified using a distributed
consensus algorithm [13] that fails to converge in the pres‐
ence of prolonged communication delays. Some recent re‐
search works consider the impact of the imperfect communi‐
cation links on optimal dispatch of the energy among DERs
[9], [14]-[17]. The performance metrics include communica‐
tion delay [14], [15], time-varying topologies [16], time-vary‐
ing directed network with delays [17], and unreliable com‐
munication links subject to packet drops [9]. While one or
two network constraints of imperfect communication links
are considered in these studies, a typical economic dispatch
problem (EDP) should encompass more to incorporate the di‐
verse generation mix of DERs in the power grid.

In a distributed EDP involving several DERs, the underly‐
ing communication network has a huge effect on the ability
of the prosumers to reach a consensus on the optimality of
their energy demand and generation cost. Thus, maximizing
the economic benefits of P2P energy trading and sharing
(P2P-ETS) while respecting sustainability and environmental
obligations is crucial to incentivize prosumers’ participation
in P2P-ETS market. P2P-ETS is a collective term to indicate
P2P energy interaction which could include energy trading,
energy sharing, energy exchange, etc. We aim to solve the
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EDP among DERs over realistic imperfect communication
links. Furthermore, the utility derived based on the optimal
distributed EDP is assessed. Fairness is considered in the al‐
location of network resources to ensure a balanced energy
network.

We employ the multi-commodity network flow (MCNF)
optimization [18], [19] for optimizing the distributed flow of
resources in a distribution network. This is because MCNF
optimization offers the opportunity to consider the communi‐
cation links whilst solving the optimization tasks for energy
trading. For instance, MCNF optimization provides the in‐
sight into both the communication and the energy transfer
between prosumers, which can be modeled simultaneously.
The suitability of MCNF for dynamic energy management
has recently been assessed by [20] and applied to the smart
grid in [21] - [23]. The results show faster convergence and
robustness to delay and packet loss in delay-sensitive net‐
works such as smart energy systems.

The main contributions of this paper are summarized as
follows.

1) MCNF optimization is presented that allows dual opti‐
mization of energy and communication resources in P2P-
ETS where the prosumers work in consensus to meet aggre‐
gate demand and maximize their utilities.

2) Although EDP is previously investigated in [9], [13],
[15], [17] without considering imperfect communication
links, the proposed algorithm offers faster convergence with
the imperfect communication links characterized by signal
delay, signal loss, and asynchronous communication. These
imperfections usually result in stringent impacts on the opti‐
mal utility of the prosumers due to stale energy prices.

3) In addition, the optimization of utility satisfaction per‐
ceived by the prosumers is evaluated considering such imper‐
fect communication links in the smart grid with an interest
in fair allocation of the distribution network in terms of sup‐
ply and demands.

The rest of the paper is organized as follows. The litera‐
ture review is presented in Section II. The problem formula‐
tion including MCNF optimization, and utility maximization
among P2P energy traders are presented in Section III. The
simulation and results are discussed in Section IV. Section V
concludes and identifies the future work.

II. LITERATURE REVIEW

The performance limitation posed by centralized control
approaches for energy dispatch among DERs connected at
the edges of the power distribution network has birthed the
increasing proposals on distributed algorithms [9], [13], [15],
[17], [24] for energy control and P2P energy trading.

A P2P energy trading scheme is proposed in [25] using a
leader-follower Stackelberg game for the power system to re‐
duce its electricity demand during peak hours. For additional
control to reduce the curtailment of renewable generation,
[26] proposes a local energy market for distribution systems
integrating P2P energy trading with locational marginal pric‐
ing. To increase users’ participation in P2P energy trading, a
game-theoretic design is proposed in [27], which shows the
potential in attracting users to participate in the energy trad‐

ing for more reductions of carbon and cost, through a pro‐
posal of a bilateral contract in [28].

A mixed-integer linear programming-based predictive de‐
sign and a dispatch optimization algorithm are proposed in
[29], while [24] utilizes a two-level incremental cost consen‐
sus distributed algorithm to solve EDP in smart grid. With
the evolving digitization of power grid, communication sys‐
tems have become an integral component of the smart grid,
which poses the problems of stale energy prices due to time
delay and packet losses from imperfect communication
links. Thus, the influence of time delays on the distributed
algorithms is investigated in [13] and [15]. In [13], the influ‐
ence of time delays over different types of information ex‐
changed among DER is investigated, and it is found that the
consensus algorithm either converges to an incorrect value
or fails to converge altogether. Further, [17] proposes a dis‐
tributed algorithm based on push-sum and gradient method
to solve the EDP among connected DERs over fixed and
time-varying network delays. Reference [9] proposes a robus‐
tified extension of [17] using the same method but solves
the coordination problem over packet-dropping communica‐
tion links. Other efforts for reducing the communication de‐
lay in DERs are found in [30], [31].

To maximize the social welfare of generators and consum‐
ers, [32] proposes an incremental welfare distributed consen‐
sus algorithm, which is further extended in [33] to incorpo‐
rate transmission loss and directed communication topolo‐
gies. In [34], a social welfare maximization problem using
open control law to minimize the generator and load adjust‐
ment rates is addressed. In contrast, we present the use of
MCNF optimization in solving EDP in smart grid consider‐
ing the dis-joint electrical and communication variables. The
results are then analyzed for maximizing prosumer social
welfare in a P2P energy trading network.

III. PROBLEM FORMULATION

Figure 1 presents the results for ideal case showing the
convergence of generated energy and incremental cost. In
Fig. 1(a), the physical network represents the physical con‐
nectivity of the prosumers depicted as P to a distribution net‐
work. The virtual network denotes a nodal representation of
the physical nodes to reflect the communication among
them. Figure 1 also illustrates the relationships between the
assets (physical network and virtual network) and multi-com‐
modity modeling (EDP, and social welfare of prosumers) pre‐
sented in this paper.

To formalize the relationships, let the connectivity of the
prosumers be represented using a strongly connected graph
network, which models the pairwise relations between nodes
and links. The nodes are called the vertices, and the links
connecting the vertices are the edges. In this model, the
strongly connected energy network is defined by graph G =
(VE) of V ={12N} interconnected nodes, EÍV ´V sets
of bidirectional links of any interconnected prosumers
np and nc, and N is the total number of energy prosumers in
the network. Note that P  {12np} represents the set of
energy generators with index iÎP and C {12nc} is the
set of energy consumers with index jÎ C. No prosumer has
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the combined characteristics of generator and consumer si‐
multaneously at a given trading period t, and thus
P ∩ C =Æ. It also follows that the set of all prosumers is V =
P ∪ C and the total number of prosumers is N  nc + np. The

goal of each prosumer is to optimize its energy output and
maximize its benefit and to collectively meet the total ener‐
gy demand in a distributed way.

A. Communication Network

The power network is overlayed by a communication net‐
work that conveys energy trading messages as shown in Fig.
1(a). Let the communication network be represented as a
time-varying graph G(t)= (VE(t)) with E(t) links, where each
set of links changes over time based on the state of the com‐
munication link at time t. A directed link from prosumer np

to prosumer nc is denoted by (ij)ÎE(t). Each directed link
(ij)ÎE(t) is characterized by its upper bounds of energy trad‐
ing messages through the link uij, delay k̄ij, and signal loss
probability fij on links connecting np to nc.

B. Energy Generation and Demand

For tractable solutions, we assume that the prosumers are
virtually clustered using communication network into M vir‐
tual microgrids (VMGs) [35]. We are interested in minimiz‐
ing the costs of energy generation and maximizing social
benefits within the VMG for prosumers. This problem can
be approached by minimizing the total aggregated energy
cost and assuming small clusters of energy generators.
Through clustering, energy demand can be matched with a
supplier within the mth VMG in a local P2P energy trading
fashion [36]. Let M={12M } be the set of VMGs such
that mÎM. Thus, during the trading period t, there exist
Em (t) sets of links and Dm (t) sets of demands in the mth

VMG. Each VMG is thus characterized by npÎP energy
generators, producing xi (t)iÎ np units of energy. To cluster
the prosumers, non-commodity charges could be reduced for
optimal node density and the cost of energy trading could al‐
so be reduced [35], [36]. The generation cost minimization
problem during the trading period tÎ I ij is formulated as:

min
{xi}
∑
tÎ Iij

∑
iÎ np

Ci xi (t) (ij)ÎEm (t)mÎM (1)

s.t.

∑
tÎ Iij

∑
iÎ np

xi (t)£Dm (t) (ij)ÎEm (t)mÎM (2)

xi ³ 0 "i = 12np (3)

where Ci is the cost function of prosumer iÎ np for generat‐
ing energy xi. It is assumed that the cost function follows a
convex function model for tractability. The model in (1)-(3)
implies that the total generated energy within a cluster m
must satisfy the total energy demand for energy conservation
to hold. Henceforth, we shall focus on a single period of one
hour in the P2P energy market similar to [37] as the single-
period problem can be extended to a multi-period problem
with temporally coupled constraints. The solution for the sin‐
gle-period problem demonstrates the performance of the pro‐
posed algorithm in a more explicit manner [37]. The nota‐
tion t should be dropped in (1) and (2).

C. Energy as MCNF Problem

The most basic MCNF problem can be represented as:

min
{xijk}
∑
k ÎK
∑

(ij)ÎEm

Cijk (xijk) mÎM (4)

where xijk is the energy flow of commodity k on the link be‐
tween the nodes np and nc; K is the message from different
peers in the distribution network; and Cijk (×) is the cost func‐
tion of energy flow in the links, which is the convex mono‐
tonically increasing function [20]. The decision variable in
this model is the energy flow xijk, which must follow flow
conversation criterion for the power network to be balanced,
i.e., the energy flow entering the node must be equal to the
energy flow leaving the node. In addition, energy flows
through the links are limited by lower and upper bounds,
which translates to the maximum energy flowing through the
link at the trading period t. For consistency, throughout the
rest of this paper, the term commodity represents the mes‐
sage flows from different prosumers, which is a communica‐
tion parameter.

Without the loss of generality, the EDP can be represented
as an MCNF optimization of (4), subject to the following
constraints:

P
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Physical link
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demand/supply�
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EDP among prosumers
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Fig. 1 Results for ideal case showing convergence of generated energy and incremental cost. (a) An IEEE 5-bus system of prosumers showing physical
and virtual connectivities. (b) Schematic of EDP and social welfare maximization problems.
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∑
k ÎK
∑

(ij)ÎEm

xijk £Dm mÎM (5)

lijk £ xijk £ uijk "(ij)ÎEmmÎM (6)

xijk ³ 0 "k ÎK"(ij)ÎEmmÎM (7)

xmin
ijk £ dij £ xmax

ijk "dijÎD(ij)ÎEm (8)

where dij is the demand at each bus, so that ∑
(ij)ÎEm

dij =D; uijk

and lijk are the upper and lower bounds of energy flows in
the link (ij), respectively; and xmax

ijk and xmin
ijk are the upper and

lower bounds of power generation of np, respectively. Con‐
straint (5) is the conservation of energy flow constraint. Con‐
straint (6) is the upper and lower bounds of energy flows in
the links, which must not exceed the capacity of the link.
Constraint (7) represents non-negativity constraints, i. e., a
generation unit must generate energy xi, satisfying the lower
and upper bounds of their generation capacities as shown
in (8).

D. Dual Lagrange Problem for EDP

To solve the minimization over xijk of (4), we first present
its dual Lagrange problem followed by the derivation of the
distributed (sub)gradient algorithm. The Lagrangian function
L(xλ) to relax the flow conservation constraints of problem
(4) is:

{L(xλ)=∑
k ÎK
∑

(ij)ÎEm

Cijk (xijk)-∑
k ÎK

λ ijk D+∑
k ÎK
∑

(ij)ÎEm

λ ijk xijk

s.t. (6)-(8)
(9)

where λ ijk ³ 0 is the Lagrange multiplier and the incremental
cost associated with the energy flow constraint. This is usual‐
ly an optimal parameter, which ensures that the constraint
conditions are not violated. Problem (9) and constraints (6)-
(8) are summarized as (10) and further expressed as (11).

L(xλ)=∑
k ÎK
∑

(ij)ÎEm

Cijk (xijk) -∑
k ÎK
∑

(ij)ÎEm

λ ijk D+∑
k ÎK
∑

(ij)ÎEm

λ ijk xijk

(10)

L(xλ)=∑
k ÎK
∑

(ij)ÎEm

Cijk (xijk) -∑
k ÎK
∑

(ij)ÎEm

λ ijkdijk+

∑
k ÎK
∑

(ij)ÎEm

λ ijk xijk mÎM (11)

where ∑
(ij)ÎEm

dijk =D and k ÎK. Note that the model discussed

is peculiar to energy trading and may include energy sharing
when producers do not charge peers. The model (11) can fur‐
ther be summarized in terms of the energy flows, thus we
can obtain:

L(xλ)=∑
k ÎK

C̄ijk (xijk)+∑
k ÎK

λ ijk x̄ijk -∑
k ÎK

λ ijk d̄ijk mÎM
(12)

where C̄ijk (×)= ∑
(ij)ÎEm

Cijk (×); x̄ijk = ∑
(ij)ÎEm

xijk; and d̄ijk = ∑
(ij)ÎEm

dijk.

The argument x⋆ijk that minimizes the Lagrangian given in
(12) by following a dual decomposition formulation can be
expressed as:

{x⋆ijk = arg min
(6)-(8)

L(xλ)

s.t. λ ijk ³ 0 k ÎK
(13)

When Cijk (×) is strictly convex, and the cost function can
be investigated for the optimum (minimum) value.

The dual objective function w(×) enables each energy gen‐
erator in the distribution network to participate in solving
the distributed optimization of the energy traded in the distri‐
bution network. This is quite scalable and efficient and also
could improve the trust level in the distribution network. Be‐
sides, the energy trading information of each prosumer is pri‐
vate and thus the optimization problem cannot be solved cen‐
trally because the central agent cannot access the private en‐
ergy information. Thus, the dual objective function is ex‐
pressed as:

w(λ ijk)= min
xijk ³ 0

L(xλ ijk)= min
xijk ³ 0∑

k ÎK

C̄ijk (xijk)+∑
k ÎK

λ ijk x̄ijk -

∑
k ÎK

λ ijk d̄ijk =∑
k ÎK

min
xij ³ 0

(C̄ijk (xijk)+ λ ijk x̄ijk - λ̄ ijkdijk) (14)

Clearly, (14) shows a fully k ÎK distributed problems that
each energy generator i participates in solving the problem.
The optimal dual solution can be estimated in terms of the
Lagrange of the dual function problem as:

w⋆ (λ⋆ijk)= max
λijk ³ 0

w(λ ijk) (15)

where λ⋆ijk is the optimal pricing information, which is re‐
quired to establish x⋆ijk transferred by the generator unit to
the demand unit. This can be realized through an update of
the pricing information in an iterative fashion.

E. Distributed Dual-gradient (DDG) Algorithm for EDP

Problem (15) is solved using the (sub)gradient algorithm,
which is a generalization of the gradient descent, using the
iterations as:

λ ijk (τ + 1)= [ λ ijk (τ)- ατg(τ) ]+ k ÎK(ij)ÎEm (16)

where ατ is the step size at time τ; and g(τ) is a (sub)gradi‐
ent to w(λ ijk) at λ ijk (τ). Note that [s]+ =max(s0).

Assumption: since the cost function within the dual objec‐
tive function is strictly convex, the dual function w(λ ijk) is
continuously differentiable [38].

The (sub)gradient g(τ) is realized by taking the first deriva‐
tive of (14) and setting the result equal to zero.

g(τ)=
¶w(λ ijk)

¶λ ijk

= 0Þ- ( )∑
k ÎK

d̄ijk -∑
k ÎK

x̄ijk = 0 (17)

Substituting (17) into (16), a (sub)gradient update of (15)
along each dual variable is obtained and expressed as:

λ(τ + 1)
ijk =

é

ë
êêλ(τ)

ijk - ατ ( )∑
k ÎK

x̄ijk -∑
k ÎK

d̄ijk

ù

û
úú

+

(ij)ÎEm (18)

As can be seen in (18), when the demand is greater than
the supply, the generators will increase the price of the ex‐
cess demand energy units by ατ. For example, when

∑
(ij)ÎEm

dijk > ∑
(ij)ÎEm

xijk, ατ ( )∑
k ÎK

x̄ijk -∑
k ÎK

d̄ijk in (18) will be great‐

er than zero which leads to [s]+ =max(s0)>0. The dual vari‐
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ables are updated bi-directionally and synchronously at dis‐
crete time τ = {01¥}, and only neighbors can communi‐
cate. For instance, each generation unit will wait a random
time before transmitting the next update of its generated out‐
put. At every time step, there is an upper bound on the opti‐
mal value of the Lagrange function (9), which is obtained by
evaluating the dual objective function (15). Each link com‐
putes its (sub)gradient coordinate using the energy flow vari‐
able xijk. To reduce excess overheads and delay that could re‐
sult in assigning additional scalar variables to the estimate of
each generator unit at each iteration as shown in [9], the in‐
formation communicated among the generators is completely
distributed and limited to the incremental cost λ ijk. The nov‐
elty lies in that each generator ensures that the price is used
as an indicator function to generate the required energy that
satisfies the network demand. λ ijk is used by each generator
to update its generation output xijk at the k th flow. Note that
the model (18) is changed to a consensus problem when all
the incremental costs λ ijk are identically equal to ze‐
ro [39].

F. Modeling Communication Delay and Signal Loss

The robustness of an algorithm can be measured, i. e., its
ability to converge in the presence of faults which could re‐
sult from the out of sequence delivery or signal loss. In a
consensus network where all peers are minimizing their ob‐
jectives to achieve a collective goal, the higher the transmis‐
sion delay in such a network, the longer it takes for the
peers to reach the desired agreement. Communication delay
is prevalent in distributed networks. Therefore, we observe
the robustness of DDG when the communication network is
subjected to high signal/transmission delay. In a realistic sce‐
nario, there is always a communication delay k̄ij (τ) on the
communication link (ij) in sending a message from np to nc.
Similarly, there exists an end-to-end time delay τ + k̄ij (τ) to
receive a response from nc by np [40]. The impact of high-
signal delay would lead to an outdated link cost in the gradi‐
ent iteration, which would generate algorithm oscillations
without reaching an optimal solution. The gradient update of
(18) becomes:

λ(τ + k̄ij (τ)+ 1)
ijk =

é

ë
ê
ê

ù

û
ú
úλ(τ + k̄ij (τ))

ijk - ατ ( )∑
(ij)ÎEm

xijk- ∑
(ij)ÎEm

dijk

+

"(ij)ÎEmmÎM

(19)

Reference [40] shows that the introduction of communica‐
tion delay would not affect the convergence speed of the al‐
gorithm but would result in convergence to a larger neigh‐
borhood of the optimal value. However, the choice of step
size determines the algorithm convergence. In this paper, a
constant step size is used, which converges to optimal value
when the objective function is differentiable [41], [42].

Similarly, a probabilistic approach [9] is employed to mod‐
el the signal loss on the communication link. A communica‐
tion between np and nc is viewed to be successful when the
information sent by np is received by nc without loss in real

time. However, due to signal loss on (ij)ÎE, a failure set
fij (τ) is introduced, where fi (τ)= 1 if the communication from
prosumer i at iteration τ is received, otherwise fi (τ)= 0. Thus,
w(λ ijk) in (14) becomes:

é

ë
êê∑

(ij)ÎEm

fi fj (∑
k ÎK

min
xij ³ 0

C̄ijk (xijk)- C̄jik (xjik)+

λ ijk ((xijk - dijk)- (xjik - djik)))ù
û
úú

+

"(ij)ÎEmmÎM (20)

G. Resource Allocation for P2P-ETS

The energy market of prosumers is further considered for
a fair allocation of communication resources. The weighted
general fairness utility model U(x*

i ) is given by:

U(x*
i )=ω i

(x*
i )1- σ

1- σ
iÎ npmÎM (21)

where σ is the fairness parameter; ω i is the weight associat‐
ed with the utility of prosumer i; and x*

i is the optimal ener‐
gy resources obtained from solving the EDP problem using
MCNF. Reference [36] shows that the utility model follows
the weighted concave function of the energy resources as:

U(x*
i )=ω i ln(x*

i ) "iÎ npmÎM. (22)

Suppose that x*
i = 0"iÎ np, then ln(x*

i )=-¥. To overcome
this problem, a constant θ i ³ 1 is introduced so that the utili‐
ty becomes U(x*

i )=ω i ln(x*
i + θ i)iÎ np. We aim to maximize

the resources allocated to a prosumer over a finite link ca‐
pacity. This is approached by maximizing the utility of each
prosumer subject to a capacity constraint, considering the op‐
timization variable as the energy resources traded over the fi‐
nite link. Then, the optimization problem becomes:

ì

í

î

ï
ïï
ï

ï
ïï
ï

max
{x*

i }iÎ np

∑
iÎ np

U(x*
i )

s.t. ∑
i:ℓÎ i

x*
i £ cℓ "ℓÎ np

x*
i ³ 0 iÎEmmÎM

(23)

where cℓ is the capacity of link ℓ.
Figure 2 demonstrates the utility function of five prosum‐

ers in a distribution network with different weights ω i. The
utility increases for varying increasing weights of the energy
traders. Physically, the weights may be interpreted to the
willingness to trade energy with other peers. Prosumers with
a higher willingness to trade the energy achieve higher utili‐
ty than other prosumers with little or no willingness.

H. Optimal Resource Allocation

Invariably, if the utility is proportional to the willingness,
higher energy flow will be experienced in the distribution
network, thus the resources must be fairly and optimally allo‐
cated to each prosumer so as not to starve other prosumers
in the network. We consider the fairness parameter σ = 1 as
shown in (21). Next, the optimal resources are considered to
be realized and allocated to the link iÎ npmÎM consider‐
ing the capacity cℓ"ℓÎEm. By taking the Lagrangian of
(23), we can obtain:
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F (xη)=∑
iÎ np

U(x*
i )- ( )∑

iÎ np

x*
i ηi -∑

iÎ np

η i cℓ ℓÎEm (24)

where x= (x1x2np) and η= (η1η2np) are the Lagrang‐
ian multipliers. By taking the first derivative of (24) with re‐
spect to xi and setting the result equal to zero, the following
is derived as:

¶F (x*
i η i)

δx*
i

= 0Þ∑
iÎ np

ω i

x*
i + θ i

-∑
iÎ np

η i= 0Þ

∑
iÎ np

x**
i =
∑
iÎ np

ω i-∑
iÎ np

η i θ i

∑
iÎ np

η i

Þ x**
i =

ω i - η iθ i

η i

"iÎ npmÎM (25)

From (25), the optimal resource allocation x**
i , "iÎ np,

mÎM depends on the congestion price η i and the number
of prosumers on the link ℓ. For example, the reduction of
the resource flow on the link ℓ due to prosumer i implies the
increase of the congestion price η i. Similarly, the increase of
the resource flow due to prosumer i implies the reduction of
the network congestion price η i. In addition, from (25), in‐
creasing the congestion price will be useful in controlling
the congestion in the distribution network since a lower
amount of data will be sent by each prosumer over the
link ℓ.

I. Social Welfare Maximization

Using the foregoing utility function, this subsection intro‐
duces a social welfare maximization objective to improve
the overall costs and maintain the fairness for all generators
and demands.W represents the total social welfare of prosum‐
ers, i. e., producers Wi (×)"iÎ np and consumer Wj (×), jÎ nc,
and p̄ is the price of electricity.

max
{x*

i dj}
W =∑

iÎ np

Wi (x*
i p̄i)+∑

jÎ nc

Wj (djp̄j) (26)

s.t.

∑
iÎ np

x*
i =∑

jÎ nc

dj (27)

x* min
i £ x*

i £ x* max
i iÎ np (28)

d min
j £ dj £ d max

j jÎ nc (29)

Constraint (27) is the conservation of energy flow con‐
straint. The operation constraints (28) and (29) represent the
lower and upper bounds of energy generation and consump‐
tion, respectively, which are further defined as follows.

1) Welfare for generating prosumer: p̄i x
*
i "iÎ npmÎM

represents the revenue that prosumer i receives from selling
x*

i units of the energy with selling price p̄i, then the social
welfare of the prosumer i can be expressed as:

Wi (x
*
i p̄i)= p̄i x

*
i -Ci (x

*
i ) (27)

where Ci (x
*
i ) is the cost incurred by i to generate x*

i units of
the energy shown in (2). We model the cost as a convex qua‐
dratic function of the form as:

Ci (x
*
i )=

1
2

ai (x
*
i )2 + bi x

*
i + ci (28)

where ai ³ 0, bi > 0, and ci = 1"iÎ np are the cost parameters.
2) Welfare for consuming prosumer: at the consumer side,

social welfare is the difference between the utility it derives
and the costs of procuring x*

j jÎ nc units of energy.

Wj (djp̄j)=Uj (dj)- p̄j x
*
j jÎ nc (29)

where Uj (dj) is the utility function that defines the amount
of satisfaction that prosumer j receives from demanding dj

units of the energy; and p̄j is the payment made for dj. As
shown in (22), the utility function of the consumer is contin‐
uously differentiable and non-decreasing.

Substituting (29) and (27) into the prosumer welfare in
(26), respectively, the optimization problem becomes:

max
{x*

i dj}
W =∑

jÎ nc

Uj (dj)-∑
iÎ np

Ci (x*
i ) (30)

s.t.

∑
iÎ np

dj £∑
jÎ nc

x*
i (31)

x* min
i £ x*

i £ x* max
i iÎ np (32)

Note that in (30), the power balance criteria defined in (5)
enables ∑

iÎ np

p̄i x
*
i -∑

jÎ nc

p̄jdj to be eliminated. Due to the con‐

cave properties of (30), the model in (30)-(32) is a concave
maximization problem and can be solved using convex pro‐
gramming algorithms. The model terms in (30)-(32) are indi‐
vidually differentiable. Thus, we involve the use of DDG in
solving the welfare maximization problem, which is similar‐
ly applied in the literature [36], [43]. Therefore, we start by
formulating the Lagrangian of problem (30)-(32) as:

J (djx*
i ρ ij)=∑

jÎ nc

Uj (dj)-∑
iÎ np

Ci (x*
i )- ρ ij ( )∑

jÎ nc

dj -∑
iÎ np

x*
i (33)

where ρ ij is the Lagrangian multiplier. In terms of producers
and consumers, problem (33) can be decomposed and solved
in a distributed fashion as:

J (djρ ij)=∑
jÎ nc

Uj (dj)-∑
jÎ nc

dj ρ ij (34)

J (x*
i ρ ij)=∑

iÎ np

ρ ij x*
i -∑

iÎ np

Ci (x*
i ) (35)

By taking the first derivatives of (34) and (35) with re‐
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spect to dj and xi, and (33) with respect to ρ ij, respectively,
and setting the result to be zero, the optimal flow variables
can be expressed as:

¶J (djρ ij)

¶d
= 0Þ d *

j =
ω j - ρ ij

ρ ij

(36)

¶J (x*
i ρ ij)

¶xi

= 0Þ x*
i =

ρ ij - bi

ai

(37)

¶J
¶ρ ij

= 0Þ ρ ij =-∑
jÎ nc

dj +∑
iÎ np

x*
i (38)

From (36), the demand is inversely proportional to the
price. The prices of energy will be assessed by the consum‐
ers to buy more energy units at low prices or buy fewer en‐
ergy units at higher prices. From the producers’ side in (37),
they are motivated to supply more at higher prices and vice
versa. From (38), the update price function ρ ijn+ 1 is ex‐
pressed as:

ρ ijn+ 1 =
é

ë
ê
ê

ù

û
ú
úρ ijn - αn ( )∑

iÎ np

x*
i -∑

jÎ nc

dj

+

(39)

In (39), the energy producers assign an additional αn pen‐
alty to the network fees at the nth time step if the total de‐
mand dj exceeds the total supply x*

i in the distribution net‐
work. However, the fees lower than the network fees will
not be charged due to [×]+.

IV. NUMERICAL SIMULATION AND RESULT ANALYSIS

To evaluate the performance of the developed distributed
algorithm for EDP, simulations are performed using Java
[19], [44]. Five prosumers adopted from [9] are considered
for comparison, where an IEEE 5-bus system is applied as
shown in Fig. 1. The generation cost function is set to be a
value of ±20 kWh of each prosumer’s demand. For in‐
stance, each prosumer generates ±20 kWh of the energy
above or below its demand, which serves as flow bounds for
each prosumer. We aim to optimize the generation output of
each prosumer to satisfy the aggregated energy demand in
the distribution network. Five prosumers are connected by
16 links. A set of energy demands in kWh of d1 = 40,
d2 = 30, d3 = 100, d4 = 40, and d5 = 90 is considered. The step
size α is set to be a constant value of 1 for most of the cases
considered. As stated in [22], with a constant step size of 1,
the distribution network achieves lower delay, and the algo‐
rithm converges faster.

A. DDG Algorithm: Without Communication Delay

The ideal case without communication delay is the most
basic case study that exists in the literature. It is used as a
starting point to test the robustness of the proposed algo‐
rithm. The stability of an algorithm, defined as the ability to
converge to a solution in a finite amount of time, is used to
measure the performance and efficiency of the proposed al‐
gorithm.

The result is analyzed based on the convergence time of
the algorithm. The results for ideal case showing conver‐
gence of generated energy and incremental cost are shown

in Fig. 3. The optimal generated energies by each of the pro‐
sumers are xi iÎM, where x1 = 40 kWh, x2 = 20 kWh,
x3 = 115 kWh, x4 = 45 kWh, and x5 = 80 kWh with a total

∑
i = 1

5

xi= 300 kWh. Note that the initial energy demand for pro‐

sumer 1 is 40 kWh, and the generation output is 40 kWh. It
shows that x1 generates its own energy, while other prosum‐
ers generate the energy below or above their energy de‐
mands to satisfy the total demanded energy of 300 kWh in
the distribution network.

Furthermore, it can be observed from Fig. 3(a) and (c).
that at the 3rd time step, the total generated energy results in
an increase in the cost function, as shown in Fig. 3(b). How‐
ever, as the output of energy generation descends overtime
to meet the demand, the incremental cost equally descends
to 0. The increasing cost before the convergence can be in‐
terpreted as the need for an additional storage space for the
generated energy in excess of demand. Thus, the optimiza‐
tion algorithm minimizes the cost by solving the EDP when
the generated energy meets the demand.

To explore the scalability of the optimization algorithm,
Fig. 4 shows the convergence of the cost function for
5 10 15 22, and 30 prosumers with the total energy de‐
mands of 300 kWh, 600 kWh, 900 kWh, 1300 kWh, and
1800 kWh, respectively. The network with 5 prosumers con‐
verge faster than the network with 10 15 and 30 prosum‐
ers. A network consisting of 15 prosumers attains an optimal
value of 900 kWh at the 25th time step as compared with
that of 22 prosumers that attain an optimal value of 1300
kWh at the 42nd time step. Note that during the simulation,
the computation time and the number of iterations per time
step increase as the number of prosumers increases.

In [24], a two-level incremental cost consensus (ICC) al‐
gorithm is proposed to solve the EDP in the smart grid. A
comparison test of the convergence time in this paper to the
ICC algorithm [24] is shown in Fig 5. It can be observed that
the DDG algorithm converges faster than the ICC algorithm.
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For instance, the total energy generation matches the total
energy demand at the 14th time step for the DDG algorithm,
whereas the ICC algorithm converges at the 38th time step.

It is implied that the EDP can be solved by both consen‐
sus algorithms, while the DDG algorithm would be a better
choice in a large-scale network.

B. Impact Evaluation of Communication Delay

A communication delay of 10 time steps is adapted from
[17] with α= 1, and the result is shown in Fig. 6.
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Fig. 6. Results for a network with communication delay showing fast con‐
vergence for DDG algorithm. (a) Evolution of generated energy from each
prosumer. (b) Total generation and total demand by prosumers.

It can be observed that each of the variables ultimately

converges to the optimal value as the ideal case, despite the
signal delays, i. e., the convergence occurs at the 610th time
step. Compared with the algorithm presented in [17], the
DDG algorithm attains its optimal solutions faster, which is
shown in Table I for the convergence time analysis. Note
that each agent in the algorithm presented in [17] holds a
couple of variables that are updated and communicated at
each iteration. Whereas, in this paper, the only communicat‐
ed variable is the incremental cost signifying the time to in‐
crease or reduce the generated energy so as to meet the ener‐
gy demand, which significantly improves the communication
delay and leads to faster convergence.

Furthermore, Table I compares the contribution of the
DDG algorithm with those in the literature by detailing the
considered cases and the convergence time. Unlike the re‐
search work presented in [9] and [17] that do not consider
the cases of both signal loss and signal delay simultaneously.

C. Impact of Communication Signal Loss

In this subsection, an unreliable communication network
with a probability of message signal loss on the communica‐
tion links is considered. Motivated by [9] and for compari‐
son, the signal loss probability is set to be 0.1. The results
are shown in Fig. 7.

It can be observed that the signal loss probability has a
negligible effect on the algorithm convergence which shows
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TABLE I
RESULT COMPARISON WITH RELATED WORKS SHOWING CONVERGENCE

TIME AND COMMUNICATION-RELATED FACTORS

Description

Signal delay

Communication signal loss

Signal delay and signal loss

Asynchronous communication

Algorithm convergence time step
(result for message delay case)

Algorithm convergence time step
(result for signal loss probability)

Ref. [17]

Yes

No

No

No

> 900

Ref. [9]

Yes

Yes

No

No

>45

This paper

Yes

Yes

Yes

Yes

610

18
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a better performance, in terms of convergence time to [9] as
shown in Table I. Comparing Figs. 6 and 7, it can be ob‐
served that the convergence for the delay is higher than that
of signal loss probability. The loss is modeled as a probabili‐
ty function that could occur or otherwise, whereas the delay
is a constant value with high significance. For instance,
when there are delays in the gradient updates, the prosumers
could advertize stale energy prices. Similarly, if the energy
flow data is significantly delayed or lost or the bad data are
detected, the energy trading information, e.g., price, could be
significantly higher or lower than the prices advertized by
the neighbors. In such a case, energy producers or consum‐
ers could resort to state estimation which elongates the deci‐
sion and agreement periods.

D. Impact of Communication Delay and Signal Loss

A case is considered, where the communication network
is both affected by signal delay of 10 time steps and a signal
loss probability of 0.1. The simultaneity of the two network
impairments is omitted in [9] and [17], which only consider
either a case of delay or packet loss. However, the combined
effects of the impairments on the communication network
are remarkably different from the effect of each variable in
isolation.

As shown in Fig. 8, the algorithm ultimately converges to
the optimal value in the ideal case. In addition, the signal de‐
lay and signal loss result in the highest communication link
cost since the prosumers synchronously transmit their update
after the communication delay, thereby oversubscribing the
communication links. It is implied that the DDG algorithm
is robust against the signal delay and signal loss of the un‐
derlying communication link. However, a significant level of
signal loss and signal delay might result in algorithm oscilla‐
tions without being converged.

Note that the robustness of the DDG algorithm results
from the use of MCNF optimization, as it offers an opportu‐
nity to consider the communication links whilst solving the
optimization task. In addition, unreliable communication

mostly results from link utilization and congestion, which
will lead to signal drop and signal delay [22]. By utilizing
the MCNF optimization, this paper has already set a limit to
the maximal allowed traffic based on the capacity of the
communication link at the time, thus reducing the probabili‐
ty of maximal utilization, congestion and signal loss.

E. Numerical Example of Optimal Resource Allocation and
Social Welfare

To evaluate the utility model and the optimal resource al‐
location problem of (23), a linear network topology shown
in Fig. 9 is used, where the numbers represent prosumers in
the network, C is the capacity constraint of the communica‐
tion link t defined in (23), and L1-L3 are the communication
links connecting the prosumers defined in (23).

The results shown in Fig. 10 demonstrate the optimal data
flow rates under the σ-fairness condition, which indicates
that prosumer 3 has the highest utility function.

Figure 11 shows that prosumers 2, 3, and 4 have more so‐
cial welfare than prosumer 1.

In addition, Fig. 12 shows a typical run over 24 hours, de‐
picting the relationship with energy demand and supply in
the network. The results reflect a reduction in the quantity of
energy demanded when the energy supply is at the highest
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price, obeying the law of demand and supply. However, the
ratio of the producers to consumers in the network affects
the price paid for the energy bought or sold as shown in Fig
12. For instance, at 40 s, with 20 producers and 8 consum‐
ers, the total energy supply is 2.2 kWh and the energy de‐
mand is 9 kWh. However, with 10 producers and 20 consum‐
ers, the total energy supply is 3.6 kWh, and the energy de‐
mand is 7 kWh.

V. CONCLUSION

We present a DDG algorithm based on multi-commodity
flow algorithm and a dual-(sub)gradient algorithm for the ap‐
plication of distributed EDP. Specifically, we test the DDG
algorithm with an unreliable communication network by con‐
sidering signal loss probability, message delay, and asynchro‐
nous communication of the prosumers. The DDG algorithm
converged faster than the previously proposed algorithms,
which is a desired feature, especially in a large power net‐
work connecting several DERs. The model is further extend‐
ed to realize the global utility maximization among market-
based participants to improve overall costs and maintain the
fairness of all generators and demands. The results show a
reduction in quantity demanded when the energy supply is at
the highest price, but the price paid is dependent on the ratio
of producers to the consumers in the network. For instance,
the lower the number of the producers, the higher the energy
price, and the lower the energy demanded by the consumers.
In the future, we shall investigate the flexibility of demands,
time-variation, and other time-coupling constraints of the
prosumers on the proposed model.
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