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Minimizing Energy Cost for Green Data
Center by Exploring Heterogeneous

Energy Resource
Xiaoxuan Hu, Peng Li, and Yanfei Sun

Abstract——With the deteriorating effects resulting from global
warming in many areas, geographically distributed data centers
contribute greatly to carbon emissions, because the major ener‐
gy supply is fossil fuels. Considering this issue, many geographi‐
cally distributed data centers are attempting to use clean ener‐
gy as their energy supply, such as fuel cells and renewable ener‐
gy sources. However, not all workloads can be powered by a sin‐
gle power sources, since different workloads exhibit different
characteristics. In this paper, we propose a fine-grained hetero‐
geneous power distribution model with an objective of minimiz‐
ing the total energy costs and the sum of the energy gap gener‐
ated by the geographically distributed data centers powered by
multiple types of energy resources. In order to achieve these
two goals, we design a two-stage online algorithm to leverage
the power supply of each energy source. In each time slot, we
also consider a chance-constraint problem and use the Bern‐
stein approximation to solve the problem. Finally, simulation re‐
sults based on real-world traces illustrate that the proposed al‐
gorithm can achieve satisfactory performance.

Index Terms——Data center, heterogeneous energy resources,
Bernstein approximation, energy management, power distribu‐
tion algorithm.

I. INTRODUCTION

GEOGRAPHICALLY distributed data centers contribute
greatly to high energy consumption and raise concerns

about their environmental impact. For example, Google and
Microsoft [1] have paid tens of millions of dollars for elec‐
tricity, and 50 tons of carbon dioxide a year have been pro‐
duced [2] due to the high power consumption.

Given the increasing pressure from energy limitations and

the deterioration of the climate, a growing number of green
data centers have been deployed to mitigate the above chal‐
lenges in two ways. One approach is to reduce power costs
by increasing energy efficiency [3], e. g., dynamic voltage
and frequency scaling. However, this approach only can re‐
duce energy consumption and carbon emissions within a lim‐
ited range. Another approach is to use alternative green ener‐
gy resources, such as solar, wind, and fuel cells [4]. Howev‐
er, the intermittent nature of renewable energy and the high
temperature of fuel cells have hindered their widespread use.
In combination with the above two approaches, several re‐
cent efforts have been made to try to achieve a balance be‐
tween steady performance and environmental protection for
geographically distributed data centers [5], [6]. Nevertheless,
only using one or two energy sources is not ideal in prac‐
tice. For instance, Table I [8]-[10] shows the different charac‐
teristics of four energy resources as power supplies. No sin‐
gle type of energy source can satisfy all the operating perfor‐
mance requirements, and these energy sources complement
each other. Therefore, the limitations of efficiency, reliabili‐
ty, economics, and environmental friendliness of a specific
type of energy source can be resolved by effectively explor‐
ing heterogeneous energy resources.

Though using heterogeneous energy supplies may result in
substantial energy efficiency and significant environmental
benefits, some challenges remain in architecture design, ca‐
pacity planning, and energy management strategies, which
have been investigated in many researches [7]. In addition,
heterogeneous workloads and energy supplies make it diffi‐
cult to match the demands and supplies. Recently, few work
has been investigated in this field. A distributed energy sys‐
tem was designed for data centers to deliver an appropriate

TABLE I
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power supply to different workloads [8]. In this paper, an ar‐
tificial neural network (ANN) was used to classify four ener‐
gy sources by the demanded performance metrics. The pro‐
posed system provides a promising option for exploring het‐
erogeneous energy for data centers, but it still requires much
information about the performance metrics of the incoming
workloads, such as utility power cost, renewable utilization,
and workload performance, which is the total completion
time of the workloads. In fact, information on the workloads
cannot be predicted in advance in many cases. In addition,
the workloads and power supplies are often changed over
time, and it is difficult to match them well in each time slot.

In order to solve the above problems, a well-grained het‐
erogeneous power distribution model is proposed to leverage
the different characteristics of multiple types of energy re‐
sources to dynamically supply power to the geographically
distributed data centers. In order to obtain a better balance
between cost and performance, we further propose an online
power management algorithm, which includes two phases:
① energy management in a single time slot; ② energy man‐
agement in a long period. In a single time slot, multiple
types of energy sources are distributed in the energy manage
phase by considering the demand from data centers as a ran‐
dom variable. A chance-constrained optimization technique
is applied, which requires little information about the de‐
mand. In a long period, we propose an online greedy distri‐
bution algorithm to leverage the power supply of each ener‐
gy source in every time slot in the energy management
phase.

The major contributions of our work are summarized as
follows.

1) We formulate a fine-grained heterogeneous power distri‐
bution model with an objective of minimizing the total ener‐
gy costs and the sum of the energy gap generated by the
geographically distributed data centers powered by multiple
types of energy resources. To guarantee better operation per‐
formance, we introduce an opportunity constraint to ensure
the probability that the workload demands exceed the energy
supplies within a small threshold.

2) We present a two-stage online algorithm to efficiently
solve the formulated problem to distribute the different pow‐
er sources to various workloads.

3) An evaluation simulation with real-world data center
traces validates the effectiveness and feasibility of our pro‐
posal and shows that our proposed algorithm can achieve
good performance.

The remainder of this paper is organized as follows. Sec‐
tion II presents the background and motivation. In Section
III, we introduce the system model and propose an online al‐
gorithm. The evaluation methodology and experimental re‐
sults are given in Sections IV and V. Finally, Section VI con‐
cludes the paper.

II. MOTIVATION AND RELATED WORK

A. Motivation

The energy cost for data centers has been increasingly
concerned in recent years. Various green energy sources are

investigated and applied to data center systems as alternative
energy supplies [9], [10]. Different kinds of energy sources
possess different characteristics. We have divided these char‐
acteristics into four major types and each type of characteris‐
tics can be represented as one or more energy sources. Fig‐
ure 1 shows the characteristics of four kinds of energy sourc‐
es.

Figure 1(a) shows the energy production from convention‐
al power plants, which are aggregated by hard coal, lignite,
and gas cogeneration power plants. This production data,
which was collected during the year 2016 from conventional
power plants, depends on the months of the year [11]. The
lowest power is used in April, while the highest power is
used in February. Although the amount of energy production
in each month differs, the energy production from the power
grid can be considered as a fixed value in a certain period of
time (one week or more). When the data centers are pow‐
ered by a conventional grid, the maximum workload cannot
exceed the capacity of the power plants. Due to the stable
energy supply from the power grid, the power infrastructures
of geographically distributed data centers remain largely un‐
der-utilized [12]. Only 85% of the capacity on average can
be used, such as in the case of Facebook [13]. The reason
for this under-utilization is that the power infrastructure of
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Fig. 1. Characteristics of different energy resources. (a) Power grid. (b) Re‐
newable energies. (c) Storage. (d) Fuel cells.
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power supply to different workloads [8]. In this paper, an ar‐
tificial neural network (ANN) was used to classify four ener‐
gy sources by the demanded performance metrics. The pro‐
posed system provides a promising option for exploring het‐
erogeneous energy for data centers, but it still requires much
information about the performance metrics of the incoming
workloads, such as utility power cost, renewable utilization,
and workload performance, which is the total completion
time of the workloads. In fact, information on the workloads
cannot be predicted in advance in many cases. In addition,
the workloads and power supplies are often changed over
time, and it is difficult to match them well in each time slot.

In order to solve the above problems, a well-grained het‐
erogeneous power distribution model is proposed to leverage
the different characteristics of multiple types of energy re‐
sources to dynamically supply power to the geographically
distributed data centers. In order to obtain a better balance
between cost and performance, we further propose an online
power management algorithm, which includes two phases:
① energy management in a single time slot; ② energy man‐
agement in a long period. In a single time slot, multiple
types of energy sources are distributed in the energy manage
phase by considering the demand from data centers as a ran‐
dom variable. A chance-constrained optimization technique
is applied, which requires little information about the de‐
mand. In a long period, we propose an online greedy distri‐
bution algorithm to leverage the power supply of each ener‐
gy source in every time slot in the energy management
phase.

The major contributions of our work are summarized as
follows.

1) We formulate a fine-grained heterogeneous power distri‐
bution model with an objective of minimizing the total ener‐
gy costs and the sum of the energy gap generated by the
geographically distributed data centers powered by multiple
types of energy resources. To guarantee better operation per‐
formance, we introduce an opportunity constraint to ensure
the probability that the workload demands exceed the energy
supplies within a small threshold.

2) We present a two-stage online algorithm to efficiently
solve the formulated problem to distribute the different pow‐
er sources to various workloads.

3) An evaluation simulation with real-world data center
traces validates the effectiveness and feasibility of our pro‐
posal and shows that our proposed algorithm can achieve
good performance.

The remainder of this paper is organized as follows. Sec‐
tion II presents the background and motivation. In Section
III, we introduce the system model and propose an online al‐
gorithm. The evaluation methodology and experimental re‐
sults are given in Sections IV and V. Finally, Section VI con‐
cludes the paper.

II. MOTIVATION AND RELATED WORK

A. Motivation

The energy cost for data centers has been increasingly
concerned in recent years. Various green energy sources are

investigated and applied to data center systems as alternative
energy supplies [9], [10]. Different kinds of energy sources
possess different characteristics. We have divided these char‐
acteristics into four major types and each type of characteris‐
tics can be represented as one or more energy sources. Fig‐
ure 1 shows the characteristics of four kinds of energy sourc‐
es.

Figure 1(a) shows the energy production from convention‐
al power plants, which are aggregated by hard coal, lignite,
and gas cogeneration power plants. This production data,
which was collected during the year 2016 from conventional
power plants, depends on the months of the year [11]. The
lowest power is used in April, while the highest power is
used in February. Although the amount of energy production
in each month differs, the energy production from the power
grid can be considered as a fixed value in a certain period of
time (one week or more). When the data centers are pow‐
ered by a conventional grid, the maximum workload cannot
exceed the capacity of the power plants. Due to the stable
energy supply from the power grid, the power infrastructures
of geographically distributed data centers remain largely un‐
der-utilized [12]. Only 85% of the capacity on average can
be used, such as in the case of Facebook [13]. The reason
for this under-utilization is that the power infrastructure of
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Fig. 1. Characteristics of different energy resources. (a) Power grid. (b) Re‐
newable energies. (c) Storage. (d) Fuel cells.
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data center is configured to maintain a high power supply to
avoid frequent emergencies caused by overloading that may
be harmful to the reliability of data centers.

Renewable energy sources provide a priority for Internet
technology (IT) corporations to power rapidly expanding da‐
ta center infrastructures. Figure 1(b) includes wind onshore
fleet electricity, wind offshore fleet electricity, and solar fleet
electricity. The energy produced from renewable sources
changes over time and cannot achieve regularity. Therefore,
renewable energy supplies are suitable for delay-sensitive
non-flexible applications (e.g., web browsing) and delay-tol‐
erant flexible applications (e.g., scientific computing). These
IT workloads are sent to geographical data centers to benefit
from the location diversity of the different characteristics of
renewable energy sources. Moreover, the flexibility of IT
workloads can solve the problem of intermittent renewable
energy through workload migration.

Energy storage devices are used to reduce the peak power
demand in data centers. They can charge and discharge ener‐
gy whenever there is a demand for different types of energy,
as shown in Fig. 1(c). The power consumption of geographi‐
cally distributed data centers may have a variety of character‐
istics due to the changing nature of the workload requests.
In this case, energy storage is needed to satisfy the different
peak requirements. For instance, some energy storage devic‐
es, such as long-term flywheels and high-energy capacitors,
are suitable for a short peak duration. Because they have a
high power density, a fast recharging time, and almost unlim‐
ited charging and discharging cycles. Some energy storage
devices, such as batteries, can sustain power longer, which
are appropriate for a longer peak duration. These devices are
used as standby uninterruptible power supplies (UPSs),
which can maintain the power supply of the whole system
for a period of time when needed [14].

Fuel cells have emerged as a promising energy source for
data centers due to their advantages of high energy efficien‐
cy, high reliability, and low carbon dioxide emission [4]. Al‐
though fuel cells show many advantages, they are slow in
changing the output power, i.e., it may take several seconds
or even minutes to reach the desired demand, as shown in
Fig. 1(d). Therefore, fuel cells are useful as a second redun‐
dant energy source for relatively longer peak intervals. If a
malfunction or maintenance occurs, the redundant units sup‐
ply the energy needed for assuring uninterrupted opera‐
tion [15].

Modern data centers often provide a variety of web servic‐
es, and the power usage patterns of different services are al‐
so heterogeneous, as shown in [16]. As mentioned above,
different workloads can be matched with different types of
energy supplies, and each energy has its advantages and dis‐
advantages. For example, despite the fact that the renewable
power sources are cheap and green, the nature of intermit‐
tent make them unsuitable for delay-sensitive tasks. Howev‐
er, they may be applied to power delay-tolerant jobs. Thus,
only one type of energy supply cannot provide a “one-size-
fits-all” solution. Recognizing such opportunities, we pro‐
pose a geographically distributed data center network pow‐
ered by heterogeneous energy sources in order to mitigate

the power budget problem with high environmentally friend‐
liness. The design of the system is introduced in Section III.

B. Multi-source Generation

Various energy sources have produced substantial con‐
cerns in power systems, and the use of multiple energy re‐
sources has been applied in many fields. Reference [17] pro‐
posed a new architecture of a multiple time slot dispatch sys‐
tem by using multiple types of renewable energy sources in
smart grid. Reference [18] proposed a method to quantify
the flexibility of a gas network considering the constraints of
gas network and different heating schemes. Based on the pro‐
posed quantitative methods, a holistic multi-energy system
was assessed to explore the impact of the gas network infra‐
structure on power system generation. Reference [19] pro‐
posed a general modelling method and an optimization solu‐
tion for energy dispatching and conversion in power systems
with various energy carriers. Reference [20] presented a nov‐
el energy management framework for energy Internet with
various energy sources. Researchers seldom pay more atten‐
tion to the energy management of data centers powered by
heterogeneous energy resources. However, the specific work‐
load could not be well matched with a particular energy
source. Therefore, we focus on fine-grained energy manage‐
ment for data centers powered by heterogenous energy re‐
sources. In each time slot, the incoming workload can be
matched well with an optimal composition of different ener‐
gy supplies.

C. Energy Cost Minimization in Data Centers

For the energy cost minimization of data centers, many
studies have been carried out by different approaches. Refer‐
ence [21] proposed an online control algorithm based on the
Lyapunov optimization technique to reduce the cost of ener‐
gy usage considering geographical workload balance, delay-
tolerant workloads scheduling, and thermal storage manage‐
ment in data centers. Reference [22] presented an intelligent
energy management system based on a robust energy cost
optimization algorithm for data centers. Power demand, elec‐
tricity price, and renewable power generation effects were
considered for optimizing the total power consumption cost.
Reference [23] considered the co-optimization of server oper‐
ation and power procurement, then proposed a new holistic
approach to implement an efficient demand response. Refer‐
ence [24] presented a group of energy management tech‐
niques to achieve the energy minimization for geographical‐
ly distributed data centers. Detailed cooling power, co-loca‐
tion interference, and time-of-use (TOU) electricity pricing
of data centers were considered in modelling of this problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we consider an energy management prob‐
lem for multi-energy-source data centers in a single time
slot. The energy management model is shown in Fig. 2,
which is divided into six parts: a power grid module, a bat‐
tery module, a fuel cell module, a renewable energy module,
data center module, and a task execution module. When a re‐
quest is submitted to the system, the scheduler on the re‐
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quest side dispatches the incoming requests to different data
centers. Meanwhile, the scheduler on the energy supply side
is responsible for distributing the different amounts of ener‐
gy for powering the data center. We have two objectives.
One objective is to minimize the total energy consumption
with a minimized gap between supply and demand. The oth‐
er objective is to minimize the total electricity cost. It is dif‐
ficult to realize these two objectives at the same time. There‐
fore, we decide to use two algorithms to realize the above
two objectives and the two algorithms are performed alter‐
nately. These two algorithms are: ① realizing the minimiza‐
tion of the gap between supply and demand in a single time
slot; ② realizing the minimization of the total energy cost in
a long time period.

A. Problem Formulation in Single Time Slot

1) Model for Data Center
There are many different kinds of workloads in data cen‐

ters, some of which are delay-sensitive, such as web servic‐
es. The others are delay-tolerant, such as simulations and
MapReduce jobs. These delay-tolerant workloads can be
scheduled to run at any time as long as the jobs are complet‐
ed before a maximum completion time, i.e., there is a maxi‐
mum completion time which may be 1 hour. Therefore, in
this paper, we consider the delay-tolerant workloads. In addi‐
tion, the effect of workload migration is ignored, because
this paper concentrates on the energy cost of mismatched de‐
mand and supply. The cost produced by workload migration
is relatively small, so it is ignored.

The amount of input workload requested in data center j
is denoted by Dj. The proportion of the incoming requests
transmitted from data center j to data center i is xij. The num‐
ber of input requests loaded from data center j to data center
i is given as:

ⅅ j ( )∑
j = 0

J

Dj xij "i (1)

where ⅅ j (×) is a non-decreasing function; and J is the num‐
ber of data centers. In this paper, we consider a linear func‐
tion that has been adopted by existing works [21], [25].

After receiving the input workload, the data center should
provide adequate energy supply to conduct data processing.
Four kinds of energy sources can be used in this model,
which exhibit different energy response curves, as analyzed
in Section II. Then, we define Gi(t), Si(t), Ei(t), and ri(t) as
the amounts of energy for the power grid, battery, fuel cell,

and renewable energy sources, respectively. For each energy
source i, we can obtain:

ì

í

î

ï
ï
ï
ï

Gi (t)³ 0 "i

Si (t)³ 0 "i

Ei (t)³ 0 "i

ri (t)³ 0 "i

(2)

The above constraints mean that each data center can be
powered by four kinds of energy sources, and each data cen‐
ter can be powered by one or more energy sources in the
same time slot.
2) Electricity Pricing

Different from the conventional data center system, there
are multiple types of energy sources. Therefore, a single elec‐
tricity pricing rule cannot be applied in this case. For exam‐
ple, a renewable energy source has the lowest electricity
price, but the price is not stable. Because the renewable ener‐
gy resource price changes over time. We denote prenew

i (t) as
the electricity price for renewable energy sources in data cen‐
ter i in time slot t. A lot of studies concentrate on the predic‐
tion of electricity pricing for renewable energy sources [26].
Therefore, in this paper, prenew

i (t) is known in advance. ri(t)
is the energy supply from renewable generation, and the cost
of renewable generation Ri can be represented as:

Ri = ri (t)prenew
i (t) "i (3)

For the power grid and battery system, we adopt the TOU
electricity pricing policy [27]. We denote three levels in this
TOU pricing policy: the prices of valley, flat, and peak loads
are pTOUlow

i (t), pTOUmiddle
i (t), and pTOUhigh

i (t), respectively. Assum‐
ing that the battery is always charged at a lower electricity
price, we regard pTOUlow

i (t) as the pricing policy for the bat‐
tery system. The cost of the power grid can be represented
as:

Pi =Gi (t)pTOU
i (t) "i (4)

where pTOU
i (t) is the TOU electricity price of the power grid.

Let Si (t) be the energy level of the battery at data center i
in time slot t. Then, Si (t) is bounded by its maximum capaci‐
ty S max

i , i.e.,

0£ Si (t)£ S max
i "it (5)

The dynamics of Si (t) can be expressed by

Si (t + 1)= Si (t)+ S charge
i (t)- S discharge

i (t) "it (6)

where S charge
i (t) and S discharge

i (t) are the charging and discharg‐
ing energy, respectively, which are bounded by (7) and (8).

10 kWh£ S charge
i (t)£ S chargemax

i "i (7)

0£ S discharge
i (t)£ S dischargemax

i "i (8)

where S chargemax
i and S dischargemax

i are the maximum charging
and discharging energy, respectively.

The charging energy of the batteries is the energy produc‐
tion. Therefore, the cost of the battery system in each time
slot can be expressed by

Bi = S charge
i (t)μpTOUlow

i (t) "i (9)

where μ is the charging/discharging rate of the battery system.
For fuel cells, we use pfuel

i (t) as the price of fuel cells.
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Fig. 2. Energy management model of multi-energy-source data center.
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Ei(t) is the energy supply from fuel cells, and the cost of fu‐
el cell generation Fi can be represented as

Fi =Ei (t)pfuel
i (t) "i (10)

As [27], [28] mentioned, these prices have the following
relationship:

pTOUhigh
i (t)³ pTOUmiddle

i (t)³ pTOUlow
i (t)³ pfuel

i (t)³ prenew
i (t) "i

(11)

3) Chance-constrained Problem
Our ideal objective is to match the energy demand and

supply in each time slot. In fact, it is hard to accurately
match the energy consumption and supply when a job ar‐
rives, because the energy demand Dj cannot be known in ad‐
vance. In addition, renewable energy is uncertain in each
time slot, and the price of this kind of energy source also
strongly fluctuates. Therefore, the matching between the en‐
ergy demand and supply in each time slot is just an ideal ob‐
jective. In order to address this problem, we model both the
energy demand Dj and the cost of renewable generation Ri

as random variables whose expectation can be acquired
through an analysis of historical information. The chance con‐
straint can be written as

Pr ( )Gi (t)+ Si (t)+Ei (t)+ ri (t)-∑
j = 0

J

Dj xij³ 0 ³ 1- ϵ "i (12)

where Pr(×) is the probability function; and ϵ is the arbitrarily
small value.

By considering the following constraints, the minimization
problem (abbreviated as P1) is described by (2) to (4), (7),
and (9) to (16).

min∑
i = 0

I

Costi (13)

s.t.

Costi =Pi +Bi +Fi +Ri "i (14)

0£Gi (t)£Gmax
i "i (15)

0£Ei (t)£E max
i "i (16)

where I is the number of energy sources; and Gmax
i and E max

i

are the maximum amounts of energy from power grid and
fuel cells, respectively.

Our objective is then to minimize the total energy cost of
the multi-energy-source supply system. As the existing con‐
vex optimization solutions cannot solve the above constraint
(12) directly, the above non-convex optimization problem is
a nondeterministic polynomial (NP)-hard problem.
4) Algorithm Design

In this subsection, we address the challenge of the chance
constraint (12) of P1 and consider ri(t) as a random variable.
Suppose that the distribution of ri(t) is bounded within
[aribri] and the distribution of Dj is bounded within [adjbdj].
By defining αri = (bri - ari)/2 and βri = (bri + ari)/2, ri(t) can be
normalized within [-11] as follows.

oi 
ri - βri

αri

Î[-11] "i (17)

Similarly, by defining αdj = (bdj - adj)/2 and βdj = (bdj + adj)/2,

Dj can be normalized within [-11] as follows.

qj 
Dj - βdj

αdj

Î[-11] "i (18)

Additionally, let Xi =Gi (t)+ Si (t)+Ei (t)+ βri +∑
j = 0

J

βdj xij and

Yij =-αdj xij. The chance constraint can be equivalently writ‐
ten as

Pr ( )Xi + αrioi +∑
j = 0

J

qjYij³ 0 ³ 1- ϵ "i (19)

According to the Bernstein approximation, the constraint
can be approximated by

inf
χ > 0 ( )χ lg ( )exp ( )χ-1 ( )Xi + αrioi +∑

j = 0

J

qj Yij + χ lg
1
ϵ

£ 0 (20)

where χ is the weight.
Formula (20) can be briefly written by

inf
χ > 0 ( )Xi + χΩ(χ-1 (oiYij))+ χ lg

1
ϵ

£ 0 "i (21)

where Ω(χ-1 (oiYij)) can be expressed as (22).

Ω(χ-1 (oiYij))= lg ( )exp ( )χ-1 ( )αrioi +∑
j = 0

J

qj Yij (22)

According to [29], Ω(w)£max(ν-wν+w) + σ 2w2 /2 where
-1£ ν- £ ν+ £ 1 and σ ³ 0 are constants that depend on the giv‐
en probability distribution, and w is a variable. Accordingly,
the constraint (20) can be approximated by

inf
χ > 0 ( )Xi + ν+ ( )αrioi +∑

j = 0

J

qj Yij +
σ 2

2χ ( )αrioi +∑
j = 0

J

qj Yij

2

+ χlog
1
ϵ
£ 0

(23)

The inf(×) in the above constraint can be removed by sub‐

stituting χ = σ ( )αri pi +∑
j = 0

J

qjYij 2lg ϵ-1 , so that (23) can be

equivalently written as

Xi + ν+ ( )αrioi +∑
j = 0

J

qj (t)Yij + 2lg ϵ-1 σ ( )αrioi +∑
j = 0

J

qj Yij £ 0

(24)

Finally, a mixed-integer linear programming formulation
for the optimization problem (abbreviated as P2) is de‐
scribed by (2) to (4), (7), (9) to (13), (15), and (24).

B. Algorithm Design for Long Period

In this subsection, we will introduce the algorithm design
for a long period. In Section III, the proportion of the incom‐
ing requests xij are obtained through Algorithm 1. However,
the energy amounts of the four energy resources in each
time slot Gi (t), Si (t), Ei, and ri (t) need to be obtained in ad‐
vance. In addition, Algorithm 1 only realize one of the objec‐
tives: the minimization of the total energy cost. In this case,
we will also minimize the gap between energy demand and
supply in all data centers. Therefore, we design another algo‐
rithm to obtain the other variables.
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The energy supplies of both fuel cells and batteries are re‐
lated to the energy supplies in the last time slot based on the
limitation of the charging/discharging rate and slow flowing
behaviour. The dynamics of Ei (t) can be expressed as

Ei (t)=Ei (t - 1)+Dfi (t - 1) "it (25)

where Dfi (t - 1) is the energy supply changes of the fuel
cells. The lower bound and upper bound of Dfi (t - 1) are de‐
noted as -f min

i and f max
i , respectively, i.e.,

1- f min
i £Dfi (t - 1)£ f max

i "it (26)

For xij (t) is obtained by Algorithm 1, we also have

∑
j = 1

J

xij (t)= 1 "it (27)

xij (t)³ 0 "ijt (28)

Let Hi (t) denote the energy demand by the workloads of
data center j in time slot t. The relation between Hi (t) and
Dj can be expressed as

Hi (t)=H i ( )∑
j = 1

J

xij (t)Dj "it (29)

The objective of Algorithm 2 is to minimize the gap be‐
tween the energy demand and supply in all data centers.
There are two situations involved in this gap: one is an over‐
supply, the other is a short supply. Let mi and ni denote the
weights of the two cases, respectively. The problem (abbrevi‐
ated as P3) is described by (6) to (8), (25) to (28), and (30)
to (35).

min∑
t = 1

T∑
i = 1

J

(Li (t)+ Zi (t)) (30)

s.t.

Wi (t)=Gi (t)+ Si (t)+Ei (t)+ ri (t) "it (31)

Li (t)=mi max(Hi (t)-Wi (t)0) "it (32)

Zi (t)= ni max(Wi (t)-Hi (t)0) "it (33)

mi + ni = 1 "i (34)

{mi > 0
ni > 0

(35)

where Wi (t) is the sum of the energy supplies from the four
kinds of energy sources. Constraints (32) and (33) stand for
the energy gap when the energy demand exceeds the energy
supply, and the energy gap when the energy supply exceeds
the energy demand, respectively. mi > ni means that the cost
of the case in which demand exceeds supply is more signifi‐
cant than that of another case. Similarly, mi < ni means that

supply exceeding demand is more important. As a result, the
objective function and constraints are all linear, and the P3
is easy to solve offline. However, the future energy demand
cannot be obtained in advance. Therefore, we design an on‐
line algorithm to solve this problem, as shown in Algo‐
rithm 2.

In Section III, we have proposed two minimization prob‐
lems to realize two different objectives: ① the minimization
of the total energy consumption with a minimized gap be‐
tween supply and demand; ② the minimization of the total
electricity cost, as shown in P1 and P3. According to the
two formulations, the results in P3 are related to the time
slots while the results in P1 are unrelated to the time slots.
Therefore, the operations in P1 occur in single time slot
while the operations in P3 are done from one time slot to
next time slot. In addition, we also have found that some in‐
put variables of Algorithm 1 are the output values of Algo‐
rithm 2. Likewise, some input variables of Algorithm 2 are
the output values of Algorithm 1. Hence, the two algorithms
are performed alternately. In order to better interpret the exe‐
cuted time logic of these two algorithm, we consider the fol‐
lowing simple example, as shown in Fig. 3.

Suppose that we have observed a group of initial values at
time slot T0: ri (T0)Gi (T0)Ei (T0Si (T0)). Then we perform
Algorithm 1 before next time slot T1 by using the initial val‐
ues. After performing the Algorithm 1, we perform Algo‐
rithm 2 at next time slot T1 by using both the initial values
at time slot T0 and some output values of Algorithm 1
(xij (T0)). Then, the Algorithm 1 will be performed again by
using some values (ri (T1)Gi (T1)Ei (T1Si (T1))) obtained

Algorithm 2
Input: xij(T0)
Output: ri(T1), Gi(T1),
             Ei(T1), Si(T1)

Algorithm 2
Input: xij(T1)
Output: ri(T2), Gi(T2),
             Ei(T2), Si(T2)

Algorithm 1
Input: ri(T0), Gi(T0),
          Ei(T0), Si(T0)
Output: xij(T0), Costi(T0)

Algorithm 1
Input: ri(T1), Gi(T1),
          Ei(T1), Si(T1)
Output: xij(T1), Costi(T1)

T1

T0

T2

1 hour

…

1 hour

Fig. 3. Relationship between two algorithms.

Algorithm 1: online control algorithm in single time slot

1: Input: set ri(t), Gi(t), Ei(t), Si(t), I, J, pTOU
i , prenew

i , pfuel, ν+, σ, αri, βri

2: Output: xij, Costi

3: begin

4: at the beginning of each time slot t, do

5: observe the system states: ri(t), Gi (t), Ei (t), Si(t)

6: find the optimal solution of P2

7: end

Algorithm 2: online algorithm in long period

1: Input: set I, J, Dj, S charge
i (t), S discharge

i (t), fi (t), xij (t)

2: Output: ri (t)Si (t)Gi (t)Ei (t)

3: Wi (t)= 0

4: for t = 0; t ³ T do

5: for i= 0; i³ I do

6: observe the states demands: Dj (t), xij (t)

7: increase the energy supply following the order of ri (t), Ei (t), Gi (t),
Si (t)

8: obtain the objective value of P2

9: end

10: end
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from Algorithm 2. Therefore, the complete algorithm com‐
bining the two algorithms is shown in Algorithm 3.

IV. EVALUATION METHODOLOGY

A. Measurement Metric and Experimental Settings

Carbon usage effectiveness (CUE) [30], [31] is defined as
a sustainability metric to measure the carbon emission associ‐
ated with data centers. A comparison of the carbon emission
rate from the most commonly-used energy sources is shown
in Table II [30]. Then, we use the average carbon emission
rate to estimate the green level of each energy composition.
The average carbon emission rate (CER) of a composition is
found by summing the weighted contributions from each
type of energy source, which is defined as:

CER=
∑eiγ i∑ei

(36)

where ei is the electricity generated from energy type i; and
γ i is the carbon emission rate of energy type i.

In the next section, we carry out several sensitivity analy‐
ses for the key parameters of our proposed model to investi‐
gate the relationship between different parameters and their
effects on the final results. In our proposed model, we have
two different optimization objectives, including the energy
cost and the gap between demand and supply. In order to
better obtain a clear comparison between the different pairs
of parameters, we introduce a new optimization objective
named Tcost, which is:

Tcost = gap´ 17 (37)

where gap is a type of energy loss. The factor 17 in (37)
means that, as the gap between demand and supply is a type
of energy loss, we can use the maximum electricity price as
the price of the energy gap.

The other key experimental settings are given in Table III.

B. Methodology

We use five different kinds of workload traces collected
from the Wiki data center, which are shown in Figs. 4 (a) -
(e) [32].

In the experiments, the length of each time slot is set to
be 1 hour. The five traces show different characteristics. We
also use solar energy generation and wind energy production
as our renewable energy traces, which are shown in Fig. 5
[33]. The energy prices of renewable energy sources are also
shown in Fig. 5(d). We compare our proposed methods with
the following schemes.

1) GSEr: including the power grid, battery, fuel cells, and
renewable energy.

2) GSE: including the power grid, battery, and fuel cells.
3) GEr: including the power grid, fuel cells, and renewable

energy.
4) GSr: including the power grid, battery, and renewable

energy.
5) GS: including the power grid and the battery.
6) G: only including the power grid.

V. EXPERIMENTAL RESULTS

A. Sensitivity Analysis

There are various important parameters in the proposed
system model. As discussed in Section III, different amounts
of power are generated from the four types of energy sourc‐
es at each site. Different values of these parameters will
have a significant effect on the optimization results. For in‐
stance, expanding the maximum value of the battery capaci‐
ty or fuel cell capacity may decrease or increase the energy
gap, because of the slow following behaviours of the charg‐
ing or discharging rate of the battery and the power chang‐
ing rate of the fuel cells. In addition, different energy compo‐
sitions will also have a large influence on the final optimiza‐
tion results, because they will affect the proportion of energy
sources and then influence the energy cost. In this section,
we analyze the impact of Smax and Emax on different energy
composition, study how the two parameters impact the energy
cost and try to find the optimal composition of parameters.

For these experiments, we consider a configuration with
five data centers executing a hybrid workload. The experi‐
ments analyze the total cost of the system energy with differ‐
ent parameter compositions for the maximum capacities of
the battery and fuel cells. Other implementation-related fac‐
tors are ignored, because this study only focuses on sensitivi‐
ty analysis.

TABLE III
EXPERIMENTAL PARAMETER SETTINGS

Parameter

T (hour)

IJ

DEmin DSmin (kWh)

DEmaxDSmax (kWh)

S0E0 (kWh)

G0 (kWh)

Value

744

5

5

10

5

200

Parameter

Smax Emax (kWh)

Gmax (kWh)

pfuel (cent/kWh)

μ

ν+

σ

Value

50

500

5

0.95

0

0.95

Algorithm 3: hybrid online control algorithm

1: Begin

2: in each slot t, do

3: at the beginning of slot t, observe the system states: ri(t), Gi(t), Ei(t),
and Si (t)

4: find the optimal solution of P1

5: observe the system state: xij

6: find the optimal solution of P2

7: end

TABLE II
CARBON EMISSION RATE OF MAJOR ENERGY SOURCES

Source

Nuclear

Coal

Gas

Oil

Carbon emission
rate (g/kWh)

150.0

9680.0

4400.0

8900.0

Source

Hydro

Wind

Solar

Carbon emission
rate (g/kWh)

13.5

22.5

53.0

154



HU et al.: MINIMIZING ENERGY COST FOR GREEN DATA CENTER BY EXPLORING HETEROGENEOUS ENERGY RESOURCE

In the following subsections, we present sensitivity analy‐
sis of our proposed system from three aspects: the relation‐
ship between Smax and Emax, the relationship between DE(t)
and Emax, and the relationship between Smax and DS(t).
1) Sensitivity Analysis of Smax and Emax

The maximum capacities of the battery and fuel cells are

sampled from 10 kWh to 40 kWh. Furthermore, we consider
a simulation of GSRr for each set of values and calculate
Tcost as shown in Table IV. In the table, when the Smax is
10 kWh, the value of Tcost increases as Emax increases. Be‐
cause when the energy demand grows significantly, the ener‐
gy supply of fuel cells and batteries will increase. However,
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Fig. 4. Simulation dataset of workload. (a) Workload A. (b) Workload B. (c) Workload C. (d) Workload D. (e) Workload E.
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due to the effect of limited load following, the energy sup‐
ply will be slow in reducing its output when the energy sup‐
ply quickly drops in next time slot, which incurs large ener‐
gy gap. When Smax is larger, a part of extra energy output
will be stored in batteries, leading to less waste. When both
Smax and Emax are larger than 20 kWh, the value of Tcost is
kept on hold. On one hand, when Smax is set to be 10 kWh,
the value of Tcost increases as Emax increases, while when
Smax is larger than 20 kWh, the value of Tcost decreases as
Emax increases. On the other hand, when Smax is lower than
30 kWh, the values of Tcost decreases as Smax increases.
When Smax is not lower than 30 kWh, the value of Tcost is
kept on hold. From the whole table, we can see that when
Smax is higher than 30 kWh and Emax is larger than 20 kWh,
Tcost can obtain a minimum value of $11569.63.

2) Sensitivity Analysis of DE(t) and Emax

As discussed in Sections IV and V, the charging or dis‐
charging rate of the battery we are considering in the pro‐
posed system model has an immediate impact on the energy
cost. The workload at a particular location changes over
time by a large margin, and it can even reach hundreds of
times. DE(t) is set to determine the capacity to adapt to the
workload changes of the battery. DE(t) at different values
has different energy costs as shown in Table V.

TABLE V
COMPARISON OF Tcost BETWEEN DIFFERENT COMPOSITIONS OF DE(t) AND

Emax FOR SENSITIVITY ANALYSIS

DE(t) (kWh)

1

2

3

4

5

6

7

8

9

10

Tcost ($)

Emax =
20 kWh

91410.2

91895.9

11674.0

117013.8

116190.2

116089.1

115843.9

89180.4

89016.4

88689.2

Emax =
30 kWh

91410.2

91895.9

116755.9

117136.4

115569.6

115290.5

114967.9

88025.7

87896.4

63013.7

Emax =
40 kWh

91410.2

91895.9

116755.9

117136.4

115569.6

115290.5

114967.9

88025.7

87896.4

63013.7

Emax =
50 kWh

91410.2

91895.9

116755.9

117136.4

115569.6

115290.5

114967.9

88025.7

87896.4

63013.7

Emax and DE(t) are sampled from two value ranges, where
Emax is set as 20 kWh to 50 kWh and DE(t) is set as 1 kW

to 10 kW. When DE(t) is small (DE(t)= 1 kWh), the variation
of Emax has no effect on the Tcost. When DE(t) is 3 kWh
and 4 kWh, the limited load following is unable to adapt to
significant changes in energy demand. When DE(t) is larger
than 4 kWh, The changes of the energy supply for fuel cells
are enough to cope with the changes of energy demand. If
we fix the value of DE(t), a minimum value of Tcost can be
obtained when Emax is set as 30 kWh to 50 kWh.
3) Sensitivity Analysis of Smax and DS(t)

As discussed in Sections IV and V, the charging or dis‐
charging rate of the battery has an immediate impact on the
energy cost. The workload at a particular site changes over
time by a large margin, and it can even reach hundreds of
times. DS(t) is set to determine the capacity to adapt to work‐
load changes of the battery. DS(t) at different values has dif‐
ferent energy costs as shown in Table VI. Smax and DS(t) are
sampled from two value ranges, where Smax is set as 20 kWh
to 50 kWh and DS(t) is set as 10 kW to 20 kW. When DS(t)
is fixed, Tcost does not change appreciably when Smax chang‐
es. If we fix the value of Smax, Tcost can obtain a minimum
value when Smax is set as 20 kWh or 30 kWh. When
DSmax is 15 kWh, the Tcost increases as Smax increases from
30 kWh to 40 kWh. There is a similar explanation to Table
IV as the characteristic of battery is similar to the fuel cells.

B. Energy Cost

In this subsection, we evaluate the benefits of green data
centers powered by multi-composition energy sources. To be
more specific, we compare the energy cost among six kinds
of power compositions, which are summarized in Section VI
and shown in Fig. 6. For the three kinds of energy composi‐
tions including renewable energy, GSEr, GEr, and GSr, the
differences between solar energy and wind energy are
0.61%, 1.56%, and 3.03%, respectively. The total energy
costs of GEr, GS, and G are much higher than the other
three kinds of energy compositions. We can see that the six
kinds of energy compositions have different values in their
total energy cost. When the renewable energy is solar ener‐

TABLE VI
COMPARISON OF Tcost BETWEEN DIFFERENT COMPOSITIONS OF DS(t) AND

Smax FOR SENSITIVITY ANALYSIS

DS(t) (kWh)

10

11

12

13

14

15

16

17

18

19

20

Tcost ($)

Smax =
20 kWh

116196.9

113217.1

115698.9

115612.6

115608.0

92259.8

118423.1

118850.6

118923.3

118923.3

118923.3

Smax =
30 kWh

116196.9

113217.1

115698.9

115612.6

115608.0

92259.8

118423.1

118850.6

118923.3

118923.3

118923.3

Smax =
40 kWh

115569.6

113049.0

115397.8

115463.7

115529.5

114045.2

114244.3

112267.3

118923.2

118923.2

118923.2

Smax =
50 kWh

115569.6

113049.0

115397.8

115463.7

115529.6

114045.2

114244.3

112267.4

118923.3

118923.3

118923.3

TABLE IV
COMPARISON OF Tcost BETWEEN DIFFERENT COMPOSITIONS OF Smax AND

Emax FOR SENSITIVITY ANALYSIS

Smax (kWh)

10

20

30

40

Tcost ($)

Emax =
10 kWh

120713.1

116921.8

116190.2

116190.2

Emax =
20 kWh

120775.9

116196.8

115569.6

115569.6

Emax =
30 kWh

120775.9

116196.8

115569.6

115569.6

Emax =
40 kWh

120775.9

116196.8

115569.6

115569.6
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gy, the relationship among the values of the energy cost is
TcostGEr >TcostGS = TcostG >TcostGSr >TcostGSE >TcostGSEr.

When the renewable energy is wind energy, the relation‐
ship among the values of the energy cost is TcostGS =
TcostG >TcostGEr >TcostGSr >TcostGSE >TcostGSEr. The major
difference between the two relationships is the value of GEr;
the energy generation of wind energy is much higher than
that of solar energy, which is shown in Fig. 6(b) and (c).

When the renewable energy is solar energy, the data cen‐
ters always need to be powered by the power grid and fuel
cells. However, the energy variation is limited by the fuel
cells. The main energy supply should be the power grid. As
shown in Fig. 7(d) and (i), in both pie charts, the proportion

of fuel cells is only around 2%-3%. In Fig. 7(d), the propor‐
tion of solar energy is only 0.15%. However, in Fig. 7(i),
the proportion of wind energy is 36%. Although the propor‐
tion of the power grid with GS and G is 100%, the energy
cost of GEr is higher than those of GS and G. Therefore, on‐
ly the use of a limited energy supply may have a bad effect
on the economic efficiency. Comparing the energy costs of
GSE and GSr, the energy cost of GSE is lower than that of
GSr in both cases of renewable energy sources. Because of
the capacities of the battery and fuel cells in GSr, the limit‐
ed energy cannot amount to full energy supply in each time
slot. Therefore, the total energy generation of GSE is much
higher than that of GS.

In summary, our power management policies can achieve
the lowest energy cost. The evaluation results show that our
management policy, compared with the GSE policy, GEr pol‐
icy, GSr policy, and GS policy, can improve the energy cost
on average by 4.77%, 118.87%, 21.49%, and 120.87%, re‐
spectively.

C. Energy Gap

The energy gap is a necessary evaluation index in several
power management policies. In this subsection, we use Tcost
to estimate the effect on the energy gap, which is shown in
Fig. 6(b). When the renewable energy is solar energy or
wind energy, the relationship of the values of Tcost is
TcostGEr ⩾TcostG > TcostGSr > TcostGSE > TcostGSEr. Compared
with the results of the energy cost in Fig. 6(a), the main dif‐
ferences are the relationships between the GSE policy and
GSr policy and between the GEr policy and GS policy.
Tcost in the GSE policy is higher than that in the GSr poli‐
cy. As mentioned in the previous subsection, GSE cannot
achieve a full energy supply in powering the data centers,
which lead to a large energy gap in this policy. As there is
no energy gap in the GS policy and G policy, the difference
in the energy cost between GEr and GS is expanded when
we use Tcost as the evaluation index.

In summary, our power management policies can achieve
the lowest Tcost. When we do not use renewable energy in
GSE, there is little impact on the energy cost. However, re‐
newable energy has a much larger impact on Tcost. On the
contrary, when we do not use fuel cells in GSr, there is little
impact on Tcost. However, the fuel cells have a much larger
impact on the energy cost. The evaluation results show that
our management policies, compared with the GSE policy,
GEr policy, GSr policy, and GS policy, can improve the ener‐
gy cost on average by 33.55%, 93.39%, 89.85%, and 4.61%,
respectively.

D. Carbon Emission Rate

We further compare the carbon emission rate based on our
proposed hybrid power management policies with other base‐
line power management strategies. Figure 6(c) shows a com‐
parison of different power management policies in terms of
carbon emission rate. Obviously, GSEr leads to the lowest
carbon emission rate because its first priority is to use clean
energy, and the proportion of the power grid is the lowest.
When we use solar energy, the carbon emission rate of GSEr
is close to that of GSE. As shown in Fig. 7(a) and (b), the
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proportions of the power grid of GSEr and GSE are 70%
and 72%, respectively, and the proportions of fuel cells are
20% and 28%, respectively. The proportions of the main en‐
ergy supply for the two policies are similar, which is the rea‐
son why GSEr and GSE have similar results for the carbon
emission rate. When we use renewable energy in the three
policies of GESr, GEr, and GSr, wind energy always achieve
better performance than solar energy. Because the total ener‐
gy generation of wind energy is always higher than that of
solar energy, the proportion of wind energy is always twice
that of wind energy, which is shown in Fig. 7(a), (c), (d),
(f), (h), (i).

In summary, our power management policies can achieve
the lowest carbon emission rate. The experimental results
show that our power management policies, compared to the
GSE, GEr, GSr, and GS policies, can improve the carbon
emission rate on average by 32.80%, 39.45%, 18.59%, and

83.02%, respectively.

VI. CONCLUSION

In this paper, we first establish a system model of mini‐
mizing the energy cost of data centers powered by heteroge‐
nous energy resources, such as power grid, fuel cells, energy
storage devices, and renewable energy sources. Then, we for‐
mulate a problem in a single time slot to minimize the total
energy cost of data centers powered by four types of energy
sources. Moreover, we also formulate another problem in a
long period to mitigate the energy gap between the workload
and energy supply. To solve a chance-constraint problem in
the former formulated problem, we design an online control
algorithm by using the Bernstein approximation. We also de‐
sign a greedy online control algorithm to solve the latter for‐
mulated problem. Finally, by using two realistic traces, we
conduct several sensitivity analyses of the impacts on vari‐
ous parameters of the system model and compare three key
characteristics of different energy supplies powered by differ‐
ent energy sources compositions. It is observed that the pro‐
posed heterogeneous energy supply model can achieve simi‐
lar results to other compositions.
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