
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 1, January 2020
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System Considering Correlated Wind

Power Prediction Errors
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Abstract——This letter investigates how to identify the marginal
bottleneck, which is defined as the constraint most likely to be
violated with the increasing wind generation uncertainty of pow‐
er system in real-time dispatch. The presented method takes the
correlation of wind power prediction error (WPPE) into ac‐
count, leading to an ellipsoidal formulation of wind power
generation region (WGR). Based on constructed WGR, the iden‐
tification procedure is formulated as a max-max-min problem,
which is solved by the algorithm based on iteration linear pro‐
gram with the proposed method to select appropriate initial
points of WPPE. Finally, two cases are tested, demonstrating
the efficacy and efficiency of the procedure to identify marginal
bottleneck.

Index Terms——Bottleneck, elliptical distribution, hyperbolic
distribution, wind power accommodation.

I. INTRODUCTION

HIGH penetration of wind power generation (WPG)
brings significant challenges to power system opera‐

tion due to its uncertain nature, which drives the develop‐
ment of new decision-making strategies [1]. On the other
hand, with a given dispatch strategy p* in real-time dispatch,
the deviation of WPG from its predicted value must be bal‐
anced by other flexible units. The balancing process can be
described as seeking a feasible solution of p subject to the
following constraints [2].
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where pi, p*
i and ri are the corrected, given and corrective

generations of flexible unit i, respectively; w0
i , Dwi and

-
w i

are the predicted generation, relative wind power prediction
error (WPPE) and installed capacity of wind farm (WF) i, re‐
spectively; di is the active power demand at bus i; R-

i , R+
i ,

p-
i , p+

i are the downward and upward ramping rates and the
lower and upper generation limits of thermal unit i, respec‐
tively; π il is the sensitivity of bus i to line l; and L+

l is the
transmission limit of line l.

The above formulation implies that the realized WPG will
be balanced by p while satisfying the power balance constraint
(2), the transmission constraint (3) and the constraint (4) de‐
picting the generator’s capability to adjust its generation.
Constraint (4) is equivalent to riÎ[-R-

iR+
i ][p-

i - p*
ip+

i - p*
i ],

where the two intervals depict the ramping capability and
spinning reserves of generator i, respectively. Note that the
capability of power system to cope with WPG uncertainty is
determined by the given dispatch strategy p*, and some con‐
straints might be violated when the realized WPG deviates
significantly from its predicted value.

To quantify the capability of power system corresponding
to a given dispatch strategy p*, the concept of dispatchable
region (DPR) is proposed in [2], which appears to be effi‐
cient and inspiring. On the other hand, an interesting prob‐
lem is which constraint will be most likely to be violated.
This topic has not been commonly studied, and the pioneer
work is reported in [3], which proposes to determine this
constraint by projecting p* to each boundary of DPR. The
boundary with minimum distance to p* will be the most
risky bottleneck. However, the correlation of WPPE, which
is an inherent nature in predicting WPG, is neglected. To
bridge the gap, this letter proposes a method to identify the
marginal bottleneck of power system when the correlation of
WPPE is taken into account, thus making helpful comple‐
ment in this research topic and providing useful information
for power system operator. The method is developed based
on formulating wind power generation region (WGR), which
depicts the possible space that the realized WPG may fall in‐
to, by ellipsoidal convex set. The identification procedure is
then formulated as a tri-level max-max-min problem. With
the proposed method to generate appropriate initial points,
the problem can be solved by the algorithm based on iteration
linear program (ITLP). Simulations on two test systems dem‐
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onstrate the efficacy and efficiency of the proposed procedure.

II. FITTING WPPE AND DEFINITION OF MARGINAL

BOTTLENECK

A. Fitting WPPE

Fitting WPPE has been wildly studied in literature, where
the distribution parameters will be used as known informa‐
tion in both power system planning and operation. Among
all distribution types, multivariate Gaussian distribution
(MGD) has been frequently assumed. To better fit the peak
and fat tails of WPPE, other distribution types, e.g., multi‐
variate Cauchy distribution (MCD) and multivariate Laplace
distribution (MLD), are employed and discussed [4]. All
these distribution types actually belong to more generalized
multivariate Elliptical distribution (MED) [5], whose proba‐
bility density function (PDF) can be expressed as (5) when
fitting WPPE.

f (Dw)= f0 g((Dw - μ1)TΣ -1
1 (Dw - μ1)) (5)

where f0 and g(×) are a constant and a decreasing scalar func‐
tion, respectively; μ1Îd ´ 1 is the expectation of Dw with d
being the number of WFs; and Σ1Îd ´ d is a positive defi‐
nite matrix.

To further capture the skewness of error distribution, the
multivariate Hyperbolic distribution (MHD) is proved an effi‐
cient method [6], [7]. When fitting WPPE, the PDF of MHD
can be expressed as:

f (Dw)=Qe
-α δ2 + (Dw - μ2)TΣ -1

2 (Dw - μ2) + βT (Dw - μ2) (6)

Q =
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where K d + 1
2

(×) is the modified Bessel function of the third

kind; and α > 0, δ > 0, βÎd ´ 1, Σ2Îd ´ d, μ2Îd ´ 1 are pa‐
rameters to be fitted.

Apart from the high accuracy, another interesting charac‐
teristic of employing MHD or MED to fit WPPE is that
their PDF contours are ellipsoids. Note that both (5) and (6)
are the decreasing function of Dw, WGR can be constructed
by imposing a minimum requirement on the PDF value ξ,
leading to:

W (ξ)={Dw| f (Dw)³ ξ} (8)

For MED, (8) can be further expressed as:

W (η)={Dw|(Dw - a)TG(Dw - a)£ u} (9)

where a = μ1; G =Σ -1
1 ; and u = η = g-1 (ξ/f0) with g-1 (×) being

the inverse function of g(×).
For MHD, (8) leads to:

W (η)={Dw|α δ2 + (Dw - μ2)TΣ -1
2 (Dw - μ2) -

βT (Dw - μ2)£ η} (10)

where η = -ln(ξ/Q).
For (10), it is equivalent to:

W (η)={Dw|(Dw - a(η))TG(Dw - a(η))£ u(η)} (11)
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As (9) represents the interior of an ellipsoid and (10) can
be reformulated to convex quadratic form similar to (9),
both (9) and (10) are convex sets. Moreover, the PDF values
of the WPPEs falling on the boundary of W (η) are identical.
This is easy to understand according to the expression of
W (η). For example, for (9), all boundary points of W (η)
leads to the same value of (Dw - μ1)TΣ -1

1 (Dw - μ1) when η is
fixed, which will result in the same PDF value of Dw accord‐
ing to (5).

B. Definition of Marginal Bottleneck

Figure 1 presents the geometrical relationship between
WGR and DPR (DPR is a polytope, it will be briefly revisit‐
ed in Section III-A), where W (η1), W (η2), and W (η3) are the
three WGRs with η3 > η2 > η1; RD is the DPR determined by
p*; and the marginal point is the intersection of W (η2) and
RD. Obviously, any realization of WPG scenario in W (η1)
can be accommodated. While for W (η3), any WPG scenario
falling in W (η3)-W (η3)RD will cause constraint violation.
The interesting question is which constraint will be most
likely to be violated as η increases. This leads to the margin‐
al bottleneck that results from the marginal point as shown
in Fig. 1. For any sufficiently small space of area dS cen‐
tered at Dw, the probability that WPPE falls into this space
is f (Dw)dS. Then, for all WPPEs leading to a violated con‐
straint, the probability that WPPE falls into the space cen‐
tered at the marginal point is the highest. The purpose of
this letter is to identify the marginal bottleneck. Note again
that the WGR is a convex set and its covering area monoton‐
ically grows with the increasing η. The marginal bottleneck
can be alternatively identified via seeking the maximum
W (η) that belongs to DPR, which will be elaborated in the
following section.

III. IDENTIFICATION OF MARGINAL BOTTLENECK

A. Problem Formulation

Before introducing the proposed procedure, we first brief‐
ly revisit the method presented in [2] to construct DPR. De‐
noting (1) as the compact form Ar +BDw £ b with A, B and

(marginal point)

Prediction
R

Marginal 
bottleneck

*w∆

(η3)W (η2)W

(η1)W
D

Fig. 1. Geometrical illustration of marginal bottleneck.
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b being appropriate parameters and r as the corrective vari‐
able or dispatch strategy after the realization of Dw. The
DPR can be formulated as:

RD ={Dw|$r®{Ar +BDw £ b"Dw}¹Æ} (15)

DPR has been proved to be a polytope, and can be explic‐
itly calculated. The DPR will be used only for comparison
purpose in case study.

Based on the compact formulation of (1), seeking the max‐
imum WGR that belongs to DPR can be formulated as:

max
η
η (16)

s.t. F(η)= 0 (17)

F(η)= max
DwÎW (η)

min
zr

{1T z| Ar +BDw - z }£ b(γ)z ³ 0 (18)

where z is the introduced slack variable; and γ is the La‐
grange multiplier of the inequality constraint.

In (18), security constraints Ar +BDw £ b is relaxed by in‐
troducing non-negative variable z. This implies if any
DwÎW (η) cannot be balanced by r, 1T z will be positive.
Therefore, constraint (17) ensures any DwÎW (η) can be bal‐
anced by a feasible dispatch strategy r. Thus, (16) is to seek
the maximum W (η), owing to which any realized Dw can be
balanced by the flexible units of power system.

B. Algorithm

To solve (16)-(18), the inner max-min problem (18) must
be solved firstly for fixed η. The approach widely used in ro‐
bust optimization with polyhedral WGR is dualizing the min
problem in (18) and then solving the problem by mixed-inte‐
ger linear programming (MILP) or special set of order pro‐
gramming (SOSP) [2], [3]. However, the constructed WGR
in this letter is ellipsoidal covex set with strong nonlinear na‐
ture, to apply MILP or SOSP, the minimum problem must
be reformulated according to its Karush-Kuhn-Tucher (KKT)
conditions, leading to:

F(η)= max
DwÎW (η)zrγ

{1T z|γT A = 00 £ (b -Ar -

}BDw + z)^ γ ³ 00 £ z^ (1 - γ)³ 0 (19)

Note that any general complementary constraint 0£ x^ y ³
0 is equivalent to (20) or (21):

(xiyi)Î SOS1 "i (20)

ì
í
î

ï

ï

0£ xi £ κ i Mbig "i
0£ yi £ (1- κ i)Mbig "i

κ iÎ{01}
(21)

where Mbig is a big constant; and (xiyi)Î SOS1 implies at
most one variable of xi and yi is non-zero, SOS1 is the spe‐
cial set of order 1.

Based on (20) and (21), (19) can be further reformulated
as MILP or SOSP, and solved by off-the-shelf solvers. How‐
ever, the number of introduced integer or SOS1 paired vari‐
ables linearly depends on the number of constraints in (18),
which relates to the security constraints in power systems.
Computation inefficiency of (19) may arise even for a
small-scale system, which will be demonstrated in case study
later.

To tackle the computation difficulty, (18) can be alterna‐
tively solved via ITLP, where the problem is firstly reformu‐
lated as the following equivalent form.

F(η)= max
DwÎW (η)γ

{γT BDw - γTb|γT A= 00£ γ£ 1} (22)

Problem (22) is bilinear and non-convex with linear con‐
straints. Although ITLP cannot guarantee a global solution
of (22), it has been demonstrated efficient in reaching a solu‐
tion of high quality with carefully selected initial points for
γ and Dw [3]. For our case, ITLP can be devised as Algo‐
rithm 1.

Note that optimal solution of (22) must be on the bound‐
ary of W (η), this letter proposes the following strategy to
construct ℬ, which arises from the ideas of selecting repre‐
sentative scenarios in stochastic optimization and mapping
arbitrary point to an ellipsoidal from a unit sphere.

A large number of initial points is generated on the sur‐
face of d dimensional unit sphere at first, and then the num‐
ber of points is reduced by, e. g., successively merging the
closest two points, until the number of points reaches to N.
Denoting the set of selected points as S, each point ys ∈ S
can be mapped to the boundary of W (η), i.e., (Dw - a)G(Dw -
a)= u, as follows [8].

Δws =H -1 E
-
1
2 ys + a "ysÎ S (23)

where H and E are from singular value decomposition
(SVD) of G u, i.e., G = uH T EH with H and E being a uni‐
tary matrix and a diagonal matrix containing all singular val‐
ues of G u.

Obviously, to improve the quality of initialized points in
ℬ, widely studied scenario-selection method in stochastic op‐
timization can be conveniently applied.

Based on Algorithm 1, the algorithm to identify marginal
bottleneck can be devised as Algorithm 2. Given a fixed η,
step 2 in Algorithm 2 tests whether W (η) is a subset of
DPR. If yes, the optimal solution Dw+ is a boundary point of
W (η). If no, step 3-step 15 will progress to seek a boundary
point falling on the section connecting Dw0 and Dw+, and η
will be updated in the following step 16. The above proce‐
dure repeats until F * £ ϵF is detected in step 2, implying cur‐
rent W (η) is the maximum WGR belonging to DPR. The

Algorithm 1: ITLP to solve (22)

1: Initialize ϵF = 10-6 and scenario set for Dw as ℬ.

2: For ℬkÎℬ do

3: Dw* ¬ℬk, DF¬ 100

4: while DF > ϵF do

5: Dw¬Dw*, then solve (22) with fixed Dw. Fp ¬F(η), and record op‐
timum of γ as γ*.

6: γ¬ γ*, then solve (16) with fixed γ. Fd ¬F(η), and record opti‐
mum of Dw as Dw*.

7: DF¬ |Fp -Fd|.

8: end while

9: Fk ¬(Fp +Fd)/2, Dw*
k ¬Dw*.

10: end for

11: Record the optimum of Dw in (22) as Dw
k*, where k * = max

k
Fk.
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marginal bottleneck can then be determined in step 21 via
perturbing Dw around Dwb outwardly to identify the margin‐
al bottleneck.

It is noteworthy that Dw0 in the Algorithm 2 represents
the inner point of W (η) regardless of η. Dw0 equals to μ1 for
MED and for MHD, which can be determined via solving
the following unconstrained optimization problem.

min
Dw

f (Dw) (24)

f (Dw)= α δ2 + (Dw - μ2)TΣ -1
2 (Dw - μ2) - βT (Dw - μ2) (25)

IV. CASE STUDY

The modified PJM-5 and IEEE-118 systems [9], where 2
and 5 WFs are connected respectively, are tested with rela‐
tive WPPE fitted by MHD. The dispatch strategy p* can also
be found in [9]. The numbers of scenarios in ℬ are 30 and
50 for the two systems, respectively. All algorithms are im‐
plemented on a desktop PC with Intel i7-6700 3.4 GHz
CPU, 16 GB memory and solved by Gurobi 8.0.1 [10]. For
comparison purpose, the SOSP to solve (22) is also imple‐
mented. Specially, the time limit for the solver when solving
SOSP is set to be 3600 s to guarantee a feasible solution.

For the PJM-5 system, the high accuracy of MHD in fit‐
ting WPPE compared with MGD is demonstrated in Fig. 2,
where the peak and skewness of the data can be well cap‐
tured. After 3.23 s, the marginal bottleneck is identified as
the transmission limit on line 5 by Algorithm 2 based on
ITLP. The correctness of the result can be verified by geo‐

metrically comparing the maximum WGR and the calculated
DPR as discussed in Fig. 2. Simulation results based on
ITLP and SOSP for the PJM-5 bus system are compared in
Table I, which shows that ITLP achieves the same accuracy
as SOSP, but with much higher computation efficiency. In
Table I, SOSP is solved 2 times, where the first calculation
takes 190 s while the second one is terminated after the solv‐
er reaching its time limit.

To show the advantage of the proposed method being able
to consider the correlation of WPPE, we change the dispatch
strategy and the lower limits of thermal unit 3 to 555 MW

Algorithm 2: identifying marginal bottleneck

1: η¬ 100, ϵ0 = 10-6, ϵ t ¬ 10-4, ϵb = 10-2 and ϵF = 10-6.

2: Solve (18) by ITLP or MILP/SOSP with the given value of η. F * ←
F(η), and record the optimum of Dw as Dw+.

3: if F * > ϵF then

4: Seeking the boundary point.

5: tmin ¬ 0, tmax ¬ 1.

6: while Dt = tmax - tmin > ϵ t do

7: t¬(tmax + tmin)/2.

8: Dw¬ t(Dw+ - Dw0), then solve (22) with fixed Dw. F *
t ¬F(η).

9: if F *
t > ϵo then

10. tmax ¬ t.

11. else

12. tmin = t.

13. end if

14. end while

15. Dwb ¬Dw.

16. Update η as follows. For MED, η¬(Dwb - μ1)TΣ -1
1 (Dwb - μ1). For

MHD, η¬ α δ2 + (Dwb - μ2)TΣ -1
2 (Dwb - μ2) - βT (Dwb - μ2).

17. Go to step 2.

18. else

19. Dwb ¬Dw+.

20. end if

21: Dw¬Dwb + ϵb (Dwb -Dw0). Then solve inner minimization problem in
(18) with fixed Dw to determine the marginal bottleneck.
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Fig. 2. Simulation results. (a) Fitting WPPE by MGD. (b) Fitting
WPPE by MHD. (c) PDF density contours of WPPEs for two WFs.

TABLE I
COMPARISON OF ALGORITHM 2 WITH ITLP AND SOSP

System

PJM-5

PJM-5

IEEE-118

IEEE-118

Method

ITLP

SOSP

ITLP

SOSP

max(η)

1.9548

1.9548

12.6970

Failed

Computation time (s)

3.23

>3790.00

147.76
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and 545 MW, respectively for the PJM-5 system. The formu‐
lated problem is solved again and the results are presented
in Fig. 3.

When the correlation of WPPE is not taken into account,
the boundary that has a nearest distance to the prediction
point A would be the marginal bottleneck as discussed in
[2], which is the transmission limit on line 5 (corresponding
to boundary perpendicular to AB) for this case. By contrast,
identified marginal bottleneck is the insufficient spinning re‐
serve (corresponding to the boundary CD) when the correla‐
tion of WPPE is considered. Such results imply that identi‐
fied marginal bottleneck may be quite different when the cor‐
relation of WPPE is inneglectable, thus demonstrating the ad‐
vantage of the proposed method.

The marginal bottleneck for modified IEEE-118 system is
successfully identified after 147.76 s, which is the ramping-
up deficiency of the thermal generator located at bus 82.
Simulation results based on ITLP and SOSP for IEEE-118
system are also presented in Table I where the SOSP failes
to provide a feasible solution. By contrast, ITLP reports a
feasible solution within reasonable time, which demonstrates
the reliability of the ITLP-based algorithm.

To enhance the practicality of the proposed method, we
have the following remarks.

1) Running the problem when needed. Although the inter‐
val for real-time dispatch can be as short as 5 min, the mod‐
el can be calculated based on a longer period, say 15 or 30
min, or when the system is experiencing stressed demand/
high-uncertain wind conditions. Under other situations, sys‐
tem security can be assessed by traditional N - k contingency
screening.

2) Employing parallel computing technique. Algorithm 1
can be implemented in parallel with different initial points,
thus improving the computation efficiency of the whole cal‐
culation process.

3) Equivalating all WFs to a few virtual ones. Note that
the dimension of the ellipsoidal uncertainty set is proportion‐
al to the number of WFs, to achieve a more accurate result
by Algorithm 1, more initial points need to be generated,

which leads to the lower computation efficiency. Through
equivalating WFs that are close to each other as virtual ones,
the initial points needed for Algorithm 1 can be reduced ac‐
cordingly, thus improving the computation efficiency.

V. CONCLUSION

For WPPEs following certain practical and reasonable dis‐
tribution types, the correlation of them can be effectively
considered when identifying marginal bottleneck of power
system. The detected bottleneck is the one with highest risk
and should be paid more attention in power system dispatch.
The ITLP, with the proposed method to generate initial
points, is also proved to be effective and more efficient than
SOSP in solving the formulated tri-level problem. Develop‐
ing more efficient algorithm to solve the bilinear problem
will undoubtedly benefit the practicality of the proposed pro‐
cedure.
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