
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 1, January 2020

Multi-time Scale Optimal Power Flow Strategy
for Medium-voltage DC Power Grid Considering

Different Operation Modes
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Abstract——Direct current (DC) power grids based on flexible
high-voltage DC technology have become a common solution of
facilitating the large-scale integration of distributed energy re‐
sources (DERs) and the construction of advanced urban power
grids. In this study, a typical topology analysis is performed for
an advanced urban medium-voltage DC (MVDC) distribution
network with DERs, including wind, photovoltaic, and electrical
energy storage elements. Then, a multi-time scale optimal pow‐
er flow (OPF) strategy is proposed for the MVDC network in
different operation modes, including utility grid-connected and
off-grid operation modes. In the utility grid-connected operation
mode, the day-ahead optimization objective minimizes both the
DER power curtailment and the network power loss. In addition,
in the off-grid operation mode, the day-ahead optimization objec‐
tive prioritizes the satisfaction of loads, and the DER power cur‐
tailment and the network power loss are minimized. A dynamic
weighting method is employed to transform the multi-objective
optimization problem into a quadratically constrained quadratic
programming (QCQP) problem, which is solvable via standard
methods. During intraday scheduling, the optimization objective
gives priority to ensure minimum deviation between the actual
and predicted values of the state of charge of the battery, and
then seeks to minimize the DER power curtailment and the net‐
work power loss. Model predictive control (MPC) is used to
correct deviations according to the results of ultra short-term
load forecasting. Furthermore, an improved particle swarm
optimization (PSO) algorithm is applied for global intraday op‐
timization, which effectively increases the convergence rate to
obtain solutions. MATLAB simulation results indicate that the
proposed optimization strategy is effective and efficient.

Index Terms——Optimal power flow (OPF), medium-voltage di‐
rect current (MVDC), quadratically constrained quadratic pro‐
gramming (QCQP), model predictive control (MPC), particle
swarm optimization (PSO).

I. INTRODUCTION

OVER the past decade, direct current (DC) power distri‐
bution techniques have developed rapidly. The remark‐

able technical advantages of DC distribution techniques can
be applied for solving problems associated with conventional
alternate current (AC) distribution networks. These problems
include facilitating the large-scale integration of distributed
energy resources (DERs), and improving power distribution
capacities while reducing the need for additional power sup‐
ply. However, DC power distribution networks must typical‐
ly adopt various operation modes to accommodate different
types of DERs and loads. Therefore, DC power distribution
networks require advanced energy management. Optimal
power flow (OPF) is the core component of advanced ener‐
gy management systems (EMSs), with the important role of
ensuring the economic, safe, and reliable operation of DC
distribution networks [1]-[3].

Notable achievements have been made in the development
of OPF strategies for DC power networks worldwide. For
example, an adaptive particle swarm optimization (PSO) al‐
gorithm based on the fuzzy control theory was proposed for
optimizing the power flow while considering both the active
power losses and voltage quality [4]. A multi-time scale co‐
ordination scheduling method based on model predictive con‐
trol (MPC) was proposed to address problems associated
with the untimely response of unit regulation and large track‐
ing errors [5]. A multi-stage dispatching method and source-
network-load coordination strategy adopting the energy stor‐
age station (ESS) cost and operation cost as optimization ob‐
jectives were developed for medium- and low-voltage mi‐
crogrids [6]-[8]. Additionally, a variety of optimization algo‐
rithms have been studied separately and demonstrated to be
feasible for conducting OPF using the distribution network
power loss and operation cost as the optimization objectives
[9]-[13]. These algorithms include the genetic algorithm (GA),
the biogeography optimization algorithm [14], differential
evolution, non-dominated sorting GA II (NSGA-II), mixed-
integer nonlinear programming [15]-[21], the interior point
method, and the conventional Lagrange multiplier algorithm.
The optimization of the power flow was also conducted for
independent microgrid systems using the operation cost of a
microgrid and the emission cost as the optimization objec‐
tives, and the effects of employing an ESS on the optimiza‐
tion objectives were investigated [9]. The results indicated that
both the operation and emission costs were reduced when the
ESS was employed. The foregoing discussion indicates that
previous research mainly focused on the mathematical model‐
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ing, solving an algorithm, and scheduling characteristic im‐
provement strategy for different optimization objectives of
microgrid systems. Few studies have focused on adjustment
and control strategies of multiple optimization objectives
with consideration of the DC power station constraints and
multiple operation modes.

To address the aforementioned issues, this study focused on
multi-time scale and control problems of integrated multi-
optimization objective for medium-voltage DC (MVDC) pow‐
er grids with the multi-mode operation, employed for an ur‐
ban power supply. According to the previous work [5], it is
assumed that the DER power prediction error decreases with
a decreasing prediction time scale. Therefore, in this study,
the optimal scheduling of MVDC power grids is divided in‐
to two stages: day-ahead scheduling and the intraday rolling
correction to mitigate the effect of intermittent DERs. In Sec‐
tion II, the topology and composition of a typical urban
MVDC distribution network that includes a wind farm, a
photovoltaic (PV) station, and an ESS are analyzed. Section
III considers the output of DERs and power station converter
constraints to model an optimal day-ahead dispatching objec‐
tive according to the maximum utilization of DERs, mini‐
mum network power loss, and minimum load loss when the
power supply is insufficient to satisfy the demand. The pri‐
mary intraday dispatching optimization objectives are to min‐
imize the deviations between the actual and predicted state
of charge (SOC) values of the batteries in the ESSs and to
minimize the deviations between the actual and predicted
values of the total DER utilization and the total network
power loss. In Section IV, the variable weight coefficient
method is developed for the day-ahead optimization prob‐
lem, which is consequently converted into a single-objective
quadratically constrained quadratic programming (QCQP)
problem to facilitate its solution. The influence of the system
operation mode on the weight coefficients of multi-objective
optimization is analyzed. Intraday optimization is implement‐
ed using an MPC rolling adjustment strategy developed to
minimize the influence of uncertain power grid factors, and
the MPC strategy is solved using an improved PSO al‐
gorithm. In Section V, MATLAB is employed to simulate
and verify the operation mode and control strategy of the
system proposed in Sections II, III, and IV. The final section
concludes the paper.

II. STRUCTURE OF TYPED URBAN MVDC POWER GRID

This paper assumes a condition where a renewable-energy
power-generation cluster exists near an urban center. It is as‐
sumed that the DER cluster can be connected to an MVDC
distribution network in two possible ways: either as a medi‐
um-voltage power grid or as a low-voltage decentralized
grid. The ±10 kV MVDC distribution network adopts the
ring circuit structure shown in Fig. 1 composed of eight
nodes denoted as P1-P8. The network accommodates the
connection of both a large-capacity PV station (P6) and a
wind farm (P3) and may include a DC converter station (P1)
and an AC converter station (P8) that can be used to export
renewable energy power or import power from other utility
grids. Low-voltage inverters are distributed as small power

grid-connected devices in a ±750 V low-voltage DC (LVDC)
microgrid. The MVDC distribution network accommodates
two load types: a unidirectional power flow load and a bidi‐
rectional power flow load. All loads are connected to the DC
distribution network by buck converter stations. The loads in‐
clude a subway power station (P2), an ESS station (P5), an
LVDC industrial park power station (P7), and a residential
area power station (P4). The power and load conditions in
the assumed scenario are presented in Appendix A Table AI
and are derived from a standard IEEE 13-node distribution
network after adjustment. In this scenario, when the MVDC
operates in utility grid-connected mode, the absorption and
delivery of DER power generation are the main control tar‐
gets. When the MVDC operates in the off-grid operation
mode, the supply safety of the loads is the main control target.

III. MODEL AND MANAGEMENT OF OPTIMIZATION

TARGET

A. Day-ahead Optimization Model

In the utility grid-connected mode, the maximum DER utili‐
zation and minimum network power loss are taken as the op‐
timization objectives. In the off-grid or islanded operation
mode, the primary objective is to minimize the load loss,
and the secondary objective is to minimize the DER curtail‐
ment and network power loss.
1) DER Utilization Index

To simplify the optimization problem for day-ahead sched‐
uling over a period T, the standard objective of maximum
DER utilization is replaced with the objective of minimum
DER power curtailment in the present study. The total DER
power curtailment Dloss is expressed as follows:

Dloss =∑
i = 1

N ∑
t = 1

T

( )PDERi,max ( )t - PDERi ( )t (1)

where PDERi ( )t is the active power output; PDERi,max ( )t is the
predicted active power output of the ith DER over the tth time
interval; and N is the number of DERs.
2) Network Power Loss Index

The network power loss index Ploss is calculated as fol‐
lows:
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Fig. 1. Topology of assumed MVDC distribution network.
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Ploss =∑
t = 1

T ∑
( )i,j ∈ I

Gij ( )V t
i - V t

j

2

(2)

where Gij is the line admittance from node i to node j; and
V t

i and V t
j are the voltages of nodes i and j, respectively, in

the tth time interval for a total of I lines.
3) Load Loss Index

The total load loss Lloss is calculated as follows:

Lloss =∑
t ∈ T
∑
i ∈ L

( )P p
i ( )t - Pi ( )t (3)

where P p
i ( )t is the predicted power; and Pi ( )t is the actual

power of load i in the tth time interval for a total of L loads.
The optimization of day-ahead scheduling can be defined

by combining (1)-(3) as follows:

min (λ1k1 Dloss + λ2k2 Ploss + λLloss ) (4)

where the weight coefficients λ1 and λ2 are in the range [0,
1] (λ1 + λ2 = 1 must be satisfied); k1 and k2 are the normal‐
ization coefficients; and λ is the load loss coefficient, which
is set as 0 when the network functions in the utility grid-con‐
nected operation mode. When the network functions in the
off-grid operation mode, we set λ ≫ λ1k1 + λ2k2.

B. Intraday Optimization Model

As previously discussed, the primary intraday dispatching
optimization objective is to minimize the deviations between
the actual and predicted SOC values of the NES batteries in
the ESS and to minimize the deviations between the actual
and the predicted values of Dloss and Ploss, so that the opti‐
mization results approach the day-ahead comprehensive opti‐
mization goal. We adopt MPC to perform rolling optimal
scheduling based on ultra-short-term DER predictive data to
suppress the effects of various uncertainties on the optimiza‐
tion objectives. The intraday dispatching objective function
is as follows:

min
é

ë
êêβ1∑

t = t0

t0 + T∑
i = 1

NES

|SEi (t) - S p
Ei (t) | +

β2 ( Dloss - Dp
loss

Dp
loss

+
Ploss - P p

loss

P p
loss

)ù
û
úú (5)

where β1 and β2 are the optimal weight coefficients, they are
in the range [0, 1] and must satisfy β1 + β2 = 1; SEi ( )t is the
ultra-short-term forecasting data; S p

Ei (t) is the day-ahead pre‐
dicted value for the SOC of the ith battery of the ESS in the
tth time interval; and Dp

loss and P p
loss are the day-ahead predict‐

ed values of Dloss and Ploss, during the period of t0 to t0 + T,
respectively. We define β1 > β2 to make the first term of the
objective function in (5) to be the primary optimization goal
for ensuring that the ESS satisfies the energy balance con‐
straint of daily operation and that the second term of the
objective function is a sub-optimization objective.

C. Constraint Conditions

1) Power Flow Equation Constraints
Ignoring the loss of power and loads at the grid-connected

interface converters and assuming that power nodes are
equalized by the DC injection power and that the load nodes

conform to a constant-power model, the power flow equa‐
tion is constrained as follows:

ì

í

î

ï

ï
ïï

ï

ï
ïï

I t
ij = Gij ( )V t

i - V t
j

P t
cvi = V t

i∑
j = 1

n

GijV
t

j

P t
cvi = P t

DERi + P t
uti + P t

ESi - P t
Li

Vi,min⩽Vi⩽Vi,max

(6)

where t ∈{ 1, 2, ..., T }; i,j ∈{ 1, 2, ..., I }; I t
ij is the line current

from node i to node j in the tth time interval; P t
cvi is the con‐

verter output power of the ith node in the tth time interval;
P t

uti is the exchange power from the utility grid in the tth time
interval, P t

uti > 0 represents power flow from the utility grid,
and P t

uti < 0 represents power flow to the utility grid; P t
ESi is

the power state of the ith battery of the ESS in the tth time in‐
terval, P t

ESi > 0 represents a discharging state, and P t
ESi < 0

represents a charging state; P t
Li is the power of the ith load in

the tth time interval; and Vi,max and Vi,min are the maximum and
minimum voltages of the ith node, respectively.
2) Power Boundary Constraints

Pcvi,min⩽P t
cvi⩽Pcvi,max (7)

PDERi,min⩽P t
DERi⩽PDERi,max (8)

where Pcvi,min and Pcvi,max are the minimum and maximum
power outputs of the ith converter, respectively; and PDERi,min

and PDERi,max are the minimum and maximum active power
outputs of the ith DER, respectively.
3) Power Quality Constraints

The DC power flow can be controlled by node-voltage
regulation. However, voltage regulation at any node causes
uneven fluctuations in the network voltage distribution.
Therefore, voltage distribution imbalances can be used to
evaluate the voltage distribution and voltage control effect of
the network [15]. For a network consisting of n nodes, the
degree of voltage distribution imbalance D can be defined as
the difference between the average of the squared node-volt‐
age values (i.e., E(V2)) and the squared average of the node-
voltage values (i.e., E(V)2), as follows:

D = E (V 2 ) - E (V ) 2
=

V 2
1 + V 2

2 + … + V 2
n

n
-

( V1 + V2 + … + Vn

n )
2

⩽ϵ (9)

4) SOC Constraint of ESS

SOCESi,min⩽SOC t
ESi⩽SOCESi,max (10)

SOC t + 1
ESi = (1 - ηESi ) ⋅ SOC t

ESi -
P t

ESiΔT
CESi

(11)

SOC T
ESi = SOC 1

ESi (12)

where SOC t
ESi is the SOC of the ith battery of the ESS in the

tth time interval; SOCESi,max and SOCESi,min are the maximum
and minimum allowable SOC values of the ith battery of the
ESS, respectively; ηESi is the self-discharge efficiency of the
ith battery of the ESS; ΔT is the duration of each time inter‐
val; and CESi is the capacity of the ith battery of the ESS.
Equation (10) gives the charging and discharging limits of a
battery in the ESS. Equation (11) represents the time-series
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SOC relationships for the batteries of the ESS. Equation
(12) gives the daily conservation requirements for the batter‐
ies of the ESS, where the final SOC at t = T must be equiva‐
lent to the initial SOC at t = 1 for each battery in the ESS.
5) Power Station Regulation Margin Constraint

The maximum power output of a power station is always
limited by the maximum dispatching power of a connected
utility grid used as the balancing node. Additionally, the out‐
put power of DERs and the ESS must be regulated to ensure
the stable operation of the system. The maximum rate of
change in the output power of a power station should be set
with consideration of the power grid security and stability.
Assuming that the range of fluctuation for the power output
of a power station in the tth time interval is (−∆Pt, +∆Pt), the
regulation margin of the power station is expressed as fol‐
lows:

α - ΔPt⩽P p
uti (t)⩽α + ΔPt (13)

where α is the switching power dispatching value of the utili‐
ty grid in the tth time interval; and P p

uti (t) is the predicted out‐
put power of the ith power station in the tth time interval.

D. Optimization Target Management

The power difference between the supply and demand at
any time t depends on the power status of loads, DERs, ES‐
Ss, and the utility grid in the power distribution system, as
follows:

PΔ (t) = PL (t) - (PDER (t) + PBES (t) + PGCC (t)) (14)

where PL(t) is the total power of the loads, which is equal to
the sum of the power consumptions at P2, P4, and P7 in
Fig. 1; PDER(t) is the total output power of the DERs, which
is the sum of the power outputs at P3 and P6 in Fig. 1; and
PBES(t) and PGCC(t) are the total ESS power output at P5 and
the utility grid-connected converter (UGCC) power output at
P8, respectively. As indicated by (14), PΔ ( t ) = 0 represents
the energy equilibrium status of the system, PΔ ( t ) > 0 repre‐
sents a state of insufficient power supply, and PΔ ( t ) < 0
represents a state of excess power supply.

From this perspective, the MVDC distribution system op‐
eration can be divided into the six operation modes listed in
Table I, according to the statuses determined by PΔ(t) and
PGCC(t). The weight coefficients assigned to the optimization
objectives can then be adjusted according to the operation
mode evaluated in advance, which can ensure that the distri‐
bution system will function optimally. Detailed descriptions
of each operation mode are presented as follows.

In mode 1, the UGCC is online (i.e., PGCC(t) ≠ 0), and
PDER(t) can supply both PL(t) and ESS charging demand (i.e.,
PΔ(t) = 0). Therefore, the MVDC network does not need to
exchange power with the utility grid. The UGCC is used as
a balancing node, and the DERs operate in the maximum
power point tracking (MPPT) mode. Because distributed gen‐
eration can be fully absorbed, minimizing Ploss can be taken
by the EMS as the main optimization goal.

In mode 2, PGCC(t) ≠ 0, and PDER(t) exceeds PL(t) and the
ESS charging demand (i.e., PΔ(t) < 0). Here, the MVDC net‐
work must export power to the utility grid and/or charge the
ESS. The UGCC is used as a balancing node, and the DERs
operate in the MPPT mode. The EMS should consider mini‐
mizing Dloss and Ploss as the comprehensive optimization ob‐
jective. However, if the power margins of the ESS and the
utility grid are insufficient for absorbing the available excess
power, the DERs must operate in the limited power mode.

In mode 3, PGCC ≠ 0, and PDER(t) is insufficient to satisfy
PL(t) and the ESS charging demand (i.e., PΔ(t) > 0). In this
case, the MVDC network must obtain power from the utility
grid and/or discharge the ESS. The UGCC is used as a bal‐
ancing node, and the DERs operate in the MPPT mode. The
EMS should consider minimizing Lloss and Ploss as the com‐
prehensive optimization objective. If the power margins of
the ESS and the utility grid are insufficient to supply the re‐
quired power, loads must be abandoned according to their
priority.

In mode 4, the UGCC is offline (i.e., PGCC(t) = 0), and
PΔ(t) = 0. The ESS is used as a balancing node, and the
DERs operate in the MPPT mode. Again, the EMS takes
minimizing Ploss as the main optimization objective under the
balanced supply and demand condition.

In mode 5, PGCC(t) = 0, and PΔ(t) < 0. Here, the MVDC
power grid must charge the ESS. The ESS is used as a bal‐
ancing node, and the DERs operate in the MPPT mode. The
EMS should consider minimizing Dloss and Ploss as the com‐
prehensive optimization objective. If the power margin of
the ESS is insufficient for absorbing the available excessive
power, the DERs must operate in the limited power mode.

In mode 6, PGCC(t) = 0 and PΔ(t) > 0. Here, the MVDC
power grid must discharge the ESS. The ESS is used as a
balancing node, and the DERs operate in the MPPT mode.
The EMS should consider Lloss and Ploss as the comprehen‐
sive optimization objectives. If the power margin of the ESS
is insufficient to supply the required power, loads must be
abandoned according to their priority.

TABLE I
MAIN OPTIMIZATION OBJECTIVES IN DIFFERENT OPERATION MODES DEFINED ACCORDING TO (14)

Model

1

2

3

4

5

6

Status

P△ ( )t = 0, PGCC ≠ 0

P△ ( )t < 0, PGCC ≠ 0

P△ ( )t > 0, PGCC ≠ 0

P△ ( )t = 0, PGCC = 0

P△ ( )t < 0, PGCC = 0

P△ ( )t > 0, PGCC = 0

Optimization target

Minimize network power loss

Minimize network power loss and DER curtailment

Minimize load loss and network power loss

Minimize network loss

Minimize network power loss and DER curtailment

Minimize load loss and network power loss

Balance node

UGCC

UGCC

UGCC

ESS

ESS

ESS
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IV. SOLUTION STRATEGY

A. Day-ahead Scheduling Algorithm

The day-ahead scheduling model presents a multi-objec‐
tive QCQP problem. For such problems, NSGA-II and the
multi-objective evolutionary algorithm are commonly used.
However, these algorithms are time-consuming and cannot
guarantee that a subset of the Pareto-optimal solution set is
obtained. Therefore, in the present study, a multi-objective
optimization algorithm based on dynamic weights is used to
eliminate dimensional differences between the respective op‐
timization objectives. This approach allows the original
multi-objective QCQP problem to be decomposed into two
steps involving the calculation of weights and the single-ob‐
jective optimization. Taking the optimization presented in (4)
for MVDC network operation in the grid-connected opera‐
tion mode as an example, the first step is to calculate the
normalization coefficients (k1 and k2) as follows:

1) Set λ1 = 1 and λ2 = 0. The minimum Dloss is the optimi‐
zation objective. According to the optimization results, the
minimum DER power curtailment Dloss1 and the minimum
network power loss Ploss1 are obtained.

2) Set λ1 = 0 and λ2 = 1. The minimum Ploss is the optimi‐
zation objective. According to the optimization results, the
minimum DER power curtailment Dloss2 and the minimum
network power loss Ploss2 are obtained.

3) Calculate k1= Ploss1 − Ploss2 and k2 = Dloss1 − Dloss2.
The second step is to solve the single-objective optimiza‐

tion problem.

B. MPC Solution for Intraday Scheduling

As previously discussed, intraday optimization is imple‐
mented using an MPC rolling adjustment strategy developed
to minimize the influence of uncertain power grid factors.
This is achieved by adopting a primary intraday dispatching
optimization objective that seeks to minimize deviations be‐
tween the actual and predicted SOC values of the batteries
in ESSs and to minimize the deviations between the actual
and predicted values of total DER utilization and the total
network power loss. MPC is a closed-loop optimization con‐
trol method. The core idea of the algorithm is the receding
horizon strategy [5]. To eliminate deviations between the ac‐
tual and the predicted values caused by prediction error, the
intraday EMS conducts rolling optimization and correction
over 15 min cycles. Therefore, the ESS daily energy balance
given by (12) can be ensured, and the day-ahead predicted
switching power values of the utility grid can be tracked pre‐
cisely.

The state vector of k moments is given as X(k) = [Pf (k),
SB(k), PB(k)]T and includes the switching power of the utility
grid Pf (k), the SOC of the ESS SB(k), and the adjustable
power of the MVDC distribution network PB(k). The control
variable is defined as u(k) = ΔPB(k), where ΔPB(k) is the out‐
put power of the ESS. The disturbance variable is r(k) = [ΔPL

(k), ΔPD(k)], which includes the forecasting increments in
the load power ΔPL(k) and in the DER output power ΔPD(k).
The output vector is y(k) = [ΔPL(k), ΔSB(k)]. The multi-input
multi-output state vector equation is given as follows:

X ( )k + Δt =

é

ë

ê

ê
êêê
ê

ù

û

ú

ú
úúú
ú
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where Δt is the predicted interval; η is the battery self-dis‐
charge coefficient; and EB is the battery capacity. As indicat‐
ed by (15) and (16), the state space prediction model can be
subjected to forward iteration by an arbitrary number (p) of
predictive steps according to the ultra-short-term power pre‐
diction data of DER outputs and loads to obtain the follow‐
ing predictive vector Yf, which includes the values of P f

f (k)
and S f

B(k) over a prediction interval Δt.

Y f = [ P f
f ( )k + Δt S f

B ( )k + Δt …

P f
f ( )k + pΔt S f

B ( )k + pΔt ]T (17)

During the next pΔt period, the vector shown in (18) is
taken as the tracking control vector based on the forecasted
values of P r

f (k) and S r
B(k). The objectives are to minimize the

error |Yr − Yf | and to minimize Dloss and Ploss, whereby the
rolling optimization can be converted into the minimization
problem defined by (5). An improved PSO algorithm present‐
ed in the following subsection is used to solve the optimiza‐
tion function. Subsequently, the optimal power instructions
of all power stations can be obtained for the next pΔt inter‐
vals. However, the scheduling system presently only dis‐
patches instructions for the next scheduling cycle, and the
foregoing rolling optimization process is repeated for each
subsequent scheduling cycle.

Yr = [ P r
f ( )k + Δt S r

B ( )k + Δt …

P r
f ( )k + pΔt S r

B ( )k + pΔt ]T (18)

C. Intraday Scheduling Algorithm

The optimal intraday scheduling model presents a non-
convex nonlinear optimization problem. Because the conven‐
tional approach employing the gradient descent algorithm
suffers from the difficulty of finding the global optimum, an
improved PSO algorithm is developed for conducting global
optimization in the present study. The PSO algorithm is an
intelligent optimization approach that relies on a large group
of particles, each with an individual position x, representing
parameters providing a solution to the optimization problem
as well as a corresponding particle velocity v representing
the speed at which the particle moves through the solution
space. The updating formula is given as follows:

x← x + v (19)

v← Ωv + c1r1 (xp - x) + c2r2 (xg - x) (20)
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where Ω is the inertia coefficient; c1 and c2 are the group
learning coefficients; r1 and r2 are the random numbers in
the range [0, 1]; xp is the best position that a particle has
found thus far; and xg is the best position found by the
group of particles thus far, where xg = min(xp).

However, the conventional PSO algorithm is easily tra-
pped in local optima because of its fixed parameters. In the
present study, this tendency is mitigated by introducing a
compression factor ϕ and replacing Ω with an adaptive iner‐
tia coefficient ω. First, we define ϕ as follows:

ϕ =
c - 2 - 4c - c2

2
(21)

where c = c1 + c2. Equation (20) is revised as follows:

v← ωv + c1r1 ( )xp - x + c2r2 ( )xg - x

ϕ
(22)

The significance of ϕ is to limit the maximum values of c1

and c2, reducing the probability of oscillation during the opti‐
mization process. Then, we define ω as follows:

ω =

ì

í

î

ïï
ïï

ωmin -
( )ωmax - ωmin ( )f - fmin

favg - fmin

f ⩽ favg

ωmax f > favg

(23)

ì

í

î

ï
ïï
ï

ï
ïï
ï

fi = |Yr ( )i - Yf ( )i | + Dloss ( )i + Ploss ( )i

fmin = min ( )f1, f2,…, fn

favg =
1
n∑i = 1

n

fi

(24)

where n is the number of parcels; and fi is the fitness value
of the ith parcel, with i ∈ n.

The significance of ω is to balance the local search and
global search abilities of the particle swarm. When the fit‐
ness value of a particle f is less than the average of the popu‐
lation favg, ω is reduced, and the global search ability of the
particle swarm is correspondingly enhanced. The minimum
value of ω is set to ωmin. In contrast, when f > favg, the maxi‐
mum inertia ωmax is used and the local searchability of the
particle swarm is enhanced. A flowchart of the improved
PSO algorithm is shown in Fig. 2.

V. SIMULATION AND ANALYSIS

According to the distribution network topology shown in
Fig. 1, the power and load conditions used in the simulation
are presented in Appendix A Table AI, and the MVDC net‐
work line parameters are presented in Appendix A Table AII.
The benchmark of power grid capacity is 100 MVA. The
day-ahead and intraday forecast data for the DERs and loads
are shown in Appendix B Figs. B1 and B2, respectively. The
self-discharge rate of the ESS is set as 0.01.

A. Analysis of Day-ahead Scheduling Results

The FMINCON solver provided in the YALMIP environ‐
ment of MATLAB is employed to solve the single-objective
QCQP problem. The optimization results obtained for the
MVDC power distribution grid in the utility grid-connected
operation mode using fixed weight coefficients
(λ1 = λ2 = 0.5) are shown in Fig. 3(a). A total DER curtail‐
ment of 31.9892 MWh and a total power net loss 0.003
MWh are obtained. The optimization results obtained by dy‐
namically adjusting the weight coefficients using the strategy
proposed in Section IV-A (λ1 = 0.9, λ2 = 0.1) are shown in
Fig. 3(b). Here, a total DER curtailment of 0.3861 MWh
and a total power net loss 0.0048 MWh are obtained.

The simulated PV power curves indicate that a contradic‐
tory relationship exists between Ploss and Dloss, i.e., a decrease
in Ploss leads to an increase in Dloss and vice versa. Even un‐
der the conditions of a DER surplus, the optimal results ob‐
tained using fixed weight coefficients in Fig. 3(a) result in
large-scale DER curtailment. However, as shown in Fig. 3(b),

Start

End

Initialize parcels (x, v, n)

Does
the number of iterations

reach maximum?

N

Calculate fi, fmin, favg

Update xp, xg

Update x, v

Equation (23)

Y

Fig. 2. Flowchart of improved PSO algorithm.
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this problem is mitigated by adjusting the weight coeffi‐
cients according to the forecasting data. The switching pow‐
er curves show that increasing the switching power with the
utility grid is helpful for reducing the network power loss,
but it reduces the DER utilization. The ESS power curves in
Fig. 3 show that the role of the ESS is to stabilize fluctua‐
tions in the renewable-energy outputs, and the larger weight
coefficient governing the DER utilization objective increases
the ESS utilization rate. Additionally, as shown in Appendix
B Fig. B3, the voltage fluctuations of the nodes are con‐
trolled below 1% for weight-coefficient settings of λ1 = λ2 =
0.5 and λ1 = 0.9, λ2 = 0.1, which satisfies the power quality
requirements. However, the larger weight coefficient govern‐
ing the net power loss optimization objective provides a
smaller voltage fluctuation range.

The optimization results for the MVDC power distribution
grid in the off-grid operation mode obtained by dynamically
adjusting the weight coefficients using the strategy proposed
in Section III-A are presented in Fig. 4. The charging and
discharging frequencies and depths of the ESS are greater
than those obtained for the MVDC power distribution grid
in the utility grid-connected operation mode. This is mainly
because the ESS serves as the balancing node of the MVDC
power distribution grid when the utility grid is not connected.

B. Intraday Scheduling Results

To analyze the proposed intraday scheduling approach, we
employ an MPC predictive time scale of 1 hour and a roll‐
ing dispatching period of 15 min. The population size of the
particle swarm is 40, c1 = c2 = 2, and the maximum number
of iterations is 200. As shown in Fig. 5, the convergence
rate of the improved PSO was significantly higher than that
of the classical PSO. The improved PSO obtained a global
optimum value of 0.0762 in the 20th iteration, whereas the
classical PSO is trapped in a local optimum value of
342.9837. This example indicates that the dynamic inertia
weight proposed in this paper helps the PSO to avoid falling
into local optima.

In this case, the relative error of the DERs between the ul‐
tra-short-term prediction and the day-ahead prediction is
21.8%. As shown in Fig. 6, the total relative deviations be‐
tween the day-ahead predicted values and the MPC opti‐
mized values for the switching power and SOC of the ESS

are 8.69% and 0.18%, respectively. The MPC optimum val‐
ues are consistent with the predicted values, indicating that
the rolling control strategy based on MPC can suppress the
effects induced by DER fluctuations.

VI. CONCLUSION

DC power grids based on flexible high-voltage DC tech‐
nology have become a common means of facilitating the
large-scale integration of DERs and the construction of ad‐
vanced urban power grids. In the present study, a typical to‐
pology for an advanced urban MVDC distribution network
with DERs, including wind, PV, and electrical energy stor‐
age elements, is analyzed, and a multi-time scale OPF strate‐
gy for the MVDC network in the utility grid-connected and
off-grid operation modes is proposed. In the utility grid-con‐
nected operation mode, the day-ahead optimization objective
minimizes both Dloss and Ploss. However, in the off-grid opera‐
tion mode, the day-ahead optimization objective gives priori‐
ty to the minimization of Lloss and secondly minimizes Dloss

and Ploss. A dynamic weighting method is employed to trans‐
form the multi-objective optimization problem into a QCQP
problem that is solvable via standard methods. During intra‐
day scheduling, the optimization objective gives priority to
ensure minimum deviation between the actual value and the
predicted value of the SOC for the ESS and secondly seeks
to minimize Dloss and Ploss. We adopt MPC to correct devia‐
tions according to the results of ultra-short-term load fore‐
casting. An improved PSO algorithm is developed for per‐
forming the intraday global optimization, which reduced the
computation time to obtain solutions and avoided being
trapped in local optima. Finally, MATLAB simulation results
indicate that the proposed optimization strategy is effective
and efficient.
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TABLE AI
DATA FOR MVDC DISTRIBUTION NETWORK SCENARIO

Node

P1

P2

P3

P4

P5

P6

P7

P8

Source and load

DC power station

Subway power supply

Wind farm

Residential area power
station

ESS station

PV power station

Industrial park power
station

AC power station

Capacity
(MW)

30

5

10

5

5

10

5

30

Input
voltage (V)

±35000

±10000

±750

±10000

±750

±750

±10000

35000

Output
voltage (V)

±10000

±750

±10000

±750

±10000

±10000

±750

±10000

TABLE AII
LINE PARAMETERS FOR MVDC DISTRIBUTION NETWORK

No.

1

2

3

4

5

6

7

8

Start node

1

2

1

5

6

7

8

3

Reach node

2

3

5

6

7

8

4

4

Line inductance
per unit

0.075

0.110

0.110

0.090

0.080

0.070

0.080

0.080

Line impedance
per unit

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10
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Fig. B1. Day-ahead and intraday forecasting data for DERs. (a) Day-
ahead forecasting chart. (b) Intraday forecasting chart.
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