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Abstract——The real-time transient stability assessment (TSA)
and emergency control are effective measures to suppress acci‐
dent expansion, prevent system instability, and avoid large-scale
power outages in the event of power system failure. However,
real-time assessment is extremely demanding on computing
speed, and the traditional method is not competent. In this pa‐
per, an improved deep belief network (DBN) is proposed for
the fast assessment of transient stability, which considers the
structural characteristics of power system in the construction of
loss function. Deep learning has been effective in many fields, but
usually is considered as a black-box model. From the perspec‐
tive of machine learning interpretation, this paper proposes a lo‐
cal linear interpreter (LLI) model, and tries to give a reason‐
able interpretation of the relationship between the system fea‐
tures and the assessment result, and illustrates the conversion
process from the input feature space to the high-dimension rep‐
resentation space. The proposed method is tested on an IEEE
new England test system and demonstrated on a regional power
system in China. The result demonstrates that the proposed
method has rapidity, high accuracy and good interpretability in
transient stability assessment.

Index Terms——Transient stability assessment (TSA), represen‐
tation learning, deep belief network (DBN), local linear interpre‐
tation (LLI), visualization, emergency control.

I. INTRODUCTION

THE stability of power system is of great significance to
the industry and social life. Therefore, maintaining the

stability of power system has always been the focus of re‐
searchers and engineers. According to the discussions in [1],
transient fault is one of the most common and fatal threats to
stability of the power system. This concern has been raised
and studied since the establishment of the first power system

more than a century ago. The energy-based direct method
and the time-domain simulation are the two main methods to
analyze transient stability [2]. However, many studies have
shown that these two methods can not meet the requirements
of real-time transient stability assessment (TSA) for applica‐
tions of large-scale power system.

With the rapid development of artificial intelligence (AI),
the AI technologies are being increasingly applied to TSA.
The large number of data required in AI model can be ob‐
tained through offline simulation of power systems and his‐
torical operation data. After the model training is completed,
the online measurement data is used to perform power sys‐
tem real-time TSA [3]-[18].

In the scope of machine learning in AI, the TSA problem
is treated as a binary classification task, i. e., approximating
the transient stability boundary and determining whether the
fault clearing state is inside the boundary or not. However,
the stability of complex power system is impossible to ex‐
press in analytical form and the transient stability boundary
approximation is highly sophisticated and computationally in‐
tensive. Neural networks (NNs) [3] - [6], clustering [7], [8],
decision trees (DTs) [9] - [14], and support vector machines
(SVMs) [15], [16] as well as the least absolute shrinkage and
selection operator (LASSO) [17] are the most frequently
used machine learning algorithms. DT and LASSO have sim‐
ple structures and are easy to interpret. However, in the situa‐
tion where the classification boundary is highly nonlinear,
these methods often fail to achieve good performance. SVM
and NN are nonlinear methods, but the predictive ability of
SVM is sensitive to the kernel function selection, and ad‐
vance assumptions about the data distribution need to be
made. For conventional shallow NN, its predictive capacity
and ability are limited subject to the layer and parameter
numbers.

One of the limitations of the conventional machine learn‐
ing algorithms lies in the feature engineering process. In the
existing applications in TSA, the power system variables
such as the power angles of generators [5], [9], the active
and reactive power flows [10] or the voltage trajectories [7]
are directly fed into the machine learning models. Since the
stability boundary comprises these features in a highly non‐
linear and complex way, it is very difficult to estimate the
boundary in the original feature space. Several studies have
noticed the problem and tried to use kernel methods such as
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SVM [15], or the unsupervised embedding methods such as
principal component analysis (PCA) [19], to learn higher lev‐
el representations from the raw data before using a classifier
to assess the stability. However, the kernel methods are bi‐
ased by the design and selection of kernels, while PCA is not
appropriate for classifying different categories because the
component contributing small principal may often contain im‐
portant information about sample differences. Hence, a better
representative learning method is needed to map the original
feature space to a high-dimension representation space to make
a more accurate and robust estimation of the boundary.

A deep belief network (DBN) [20] is a non-parametric,
multi-layer NN formed by a stack of restricted Boltzmann
machines (RBMs) for hierarchical representation learning.
DBN is capable of learning complex representations from da‐
ta due to two advantages. One is its structure of multiple lay‐
ers which abstract the features layer by layer to get the high-
dimension representation. This means the feature abstract pro‐
cess requires no guidance of human feature engineering. In
the traditional energy-based TSA method, the energy func‐
tion comprises potential and kinetic energies which are for‐
mulated by the state variables. Furthermore, the state vari‐

ables can be represented by the measured algebraic variables.
Hence, the above process of energy-based method is hierar‐
chical and similar to the working logic of DBN. The second
advantage is that the feature abstract process can automatically
learn the data distribution by unsupervised learning methods,
which is robust and can be easily generalized. The comparison
among DBN, SVM, and PCA is shown in Table I.

The deep learning method has been tremendously success‐
ful in many fields such as electroencephalography [21] and
drug discovery [22]. So far, some researchers have tried to
apply the deep learning algorithm to the study of TSA. In
[23], the stacked sparse autoencoder is utilized to predict the
post-fault transient stability status of power system. This au‐
toencoder is fed by specific points extracted from the fault
on voltage magnitude measurements. However, the special
points need to be obtained after getting the voltage trajectory,
and the prediction method is still used as a black-box model.
In [24], the authors claim to use DBN in TSA for the first
time, but the method is not applied to any actual large sys‐
tem. Also, the features used for training are mostly related to
the angular velocity and kinetic energy of the generator rotor,
which are not easily observable or measurable.

Representation learning has been popular in recent years,
and there are many relative researches [25]. This paper intro‐
duces a DBN-based method to handle the transient stability
problem based on our previous work in [26]. Apart from giv‐
ing a more detailed DBN model building and training pro‐
cess considering power system structure characteristics, this
paper proposes a local linear interpreter model and tries to il‐
lustrate the deep learning model reasonably from two aspects
of input-output analysis and visual analysis separately. Since
DBN is a highly complex model and the model decision is
difficult to understand and interpret for system operators, the
proposed interpreter can give an interpretation of the relation‐
ship between the system features and the assessment result,
and it can also help guide the emergency control strategies if
the system is unstable.

The rest of paper is organized as follows. The basic frame‐
work and training process are discussed in detail in Section
II. In Section III, the interpretation method is given. Section
IV proposes the whole procedure for processing the data and
the assessing the system stability. An illustrative example of
IEEE new England test system and the application in a re‐
gional power system of China are presented in Section V. Fi‐
nally, Section VI discusses conclusions and future work.

II. DBN AND LEARNING ALGORITHM

A. Structure of DBN

A DBN is a multi-layer NN, where any two adjacent layers

can be seen as RBM [20], [27] - [30]. RBM is a generative
stochastic NN with an input layer consisting of visible nodes
and an output layer consisting of hidden nodes. RBM is de‐
signed to learn a probability distribution with hidden nodes
hk ( )k = 1, 2,⋯, K over its visible nodes vi ( )i = 1, 2,⋯, N .
The connections are restricted between the visible and hid‐
den nodes, as shown in Fig. 1. By merging one RBM’s out‐
put layer to another RBM’s input layer, more abstract repre‐
sentations can be learned by successive RBMs. Connecting a
stack of RBMs to form a DBN, with the representations
learned by each RBM hierarchically.

B. Training Process of DBN

Training a DBN consists of three steps. The first step is
the unsupervised pre-training of each RBM, i.e., with no sta‐
bility information to guide the training process. Then, the
trained RBMs are unfolded to form DBN. At last, expected
classification accuracy index is used to fine-tune the parame‐
ters of DBN [31], [32]. The training process of a DBN is

TABLE I

COMPARISON OF REPRESENTATION LEARNING METHODS

Method

DBN

SVM

PCA

Supervised or not

Unsupervised/supervised

Supervised

Unsupervised

Parametric or not

Non-parametric

Parametric

Non-parametric

Linear or not

Non-linear

Non-linear

Linear

Data distribution

Unsupervised pre-training

Pre-defined

None

h1 hk hK

v1 vi vj vN

wik wjk

�

�

Fig. 1. Basic structure of RBM.
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shown in Fig. 2 and the training direction is shown by the ar‐
row in the figure.
1) Unsupervised Pre-training

As stated above, an RBM is a two-layer NN utilized to
represent the visible units by the hidden units. As a typical
probability generation model, compared with discriminant
model, it is built to establish a joint distribution between the
observation data and the label. The connection from input
layer to hidden layer represents discriminant mode, and the
connection from hidden layer to input layer represents gener‐

ation mode. The relationship between the RBM input layer
and hidden layer defines the energy function of the system as
(1), which is given by Hinton [20], [33].

E ( |v,h θ) = -(aTv + bTh + vTWh) (1)

where v and h are the visible units and hidden units, respec‐
tively; W is the weight matrix of the connection between the
visible and hidden units; a and b are the bias of the visible
and hidden units, respectively; and θ = [ ai,bj,wij] is the pa‐
rameter of RBM.

The joint probability distribution over v and h is defined
as:

P ( |v,h θ) =
1

Z ( )θ
e-E ( )|v,h θ

(2)

where Z ( )θ is a normalization factor defined as Z ( )θ =∑
v
∑

h

e-E ( )|v,h θ to ensure that the sum of all possible probabili‐

ty distributions equals to 1. In this paper, v is a scalar vector
of power system measurements at the time of fault clearance,
including the active power P, reactive power Q, bus voltage
U and angle θ. The reason for choosing these variables is
that they are easy to be measured and acquired in system dis‐
patching. The probability of the input data is:

Pr (v) =∑
h

1

Z ( )θ
e-E ( )|v,h θ

(3)

Given the learning sample set D, the task of learning
RBM is to find the parameters so that the probability likeli‐
hood function of D is the largest. Usually, the loss function
in the form of a minimum is used as (4).

min
θ

L (θ,D) = -∑
v ∈ D

lg Pr (v) = -∑
v ∈ D

lg∑
h

Pr ( )v,h =

-∑
v ∈ D

lg∑
h

e-E ( )|v,h θ

Z ( )θ
(4)

An RBM is usually trained by a gradient decent (GD) algo‐

rithm, and the practical training tutorial is given by Hinton in
[33]. RBM 1 is first trained, then the activation probability
of the hidden layer neurons of RBM 1 is used as the input of
RBM 2 to train RBM 2, and so on to RBM k. This layer-by-
layer learning can be repeated as many times as desired. By
pre-training each RBM, the connection relation matrix of
each RBM can be obtained without any label information.
2) Unfolding and Supervised Fine-tuning

After pre-training multiple RBMs, all RBMs are unfolded
and sequentially connected to form a complete DBN that ini‐
tially uses the same weights of each RBM. Since the TSA is
a binary classification problem, logistic classifier [27] is used
in this paper. In the framework of NN, it is quite simple to
make the logistic classifier, i.e., adding a neuron with the sig‐
moid activation function as the output layer on the top of the
DBN. Then, the label (the stability status of each simulation
scenario) is used to fine-tune the weights by backpropagation
algorithms [20]. The loss function is designed according to
the specific task, and the back propagation algorithm is used
to precisely adjust the parameters of the network, and finally
the parameter matrixes W(1) = W(1) + △△(1), ⋯, W(k) = W(k) +
△△(k) of DBN are obtained, where △△(k) represents the amount
of learned fine-tuning based on the label information. The
fine-tuning procedure is supervised and requires label infor‐
mation to guide the adjustment process.
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layer k-1
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layer k-2
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layer 2
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layer 1

Input
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layer

Hidden

layer k-1
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layer k-1
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Fig. 2. Structure of DBN and learning process.
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C. Power Grid Structure Reserved RBM

The weights W of a conventional RBM do not have con‐
straints because each input is assumed to have equal signifi‐
cance and contribution. However, in power networks, the
fault propagates along the grid; thus, the connected buses
and lines share similar characteristics. In this paper, a new
regularization method is presented to consider the power grid
connection structure to promote the grouping ability of the in‐
put features [29]. The revised RBM is called a power grid
structure reserved RBM (SRRBM).

The intuitive idea behind SRRBM is that the input fea‐
tures (visible units) measured from adjacent buses or lines
share similar weights. Assume that feature vi and vj are mea‐
sured at bus i and bus j, respectively. Then, the weight wik

connecting vi and hk and the weight wjk connecting vj and hk

should be similar, as shown in Fig. 1. Mathematically,
these constraints can be obtained by adding a penalty objec‐
tive, restricting the weight difference ( wik - wjk)

2. In power
system applications, a natural criterion to measure the con‐
nection status between bus i and j is the electrical distance
ρij. The closer bus i is to bus j, the larger ρij is, and ρij = 0 if
bus i and j are not connected. The admittance between differ‐
ent nodes also follows the same rule. In this paper, in order
to simplify the calculation, the absolute value of the admit‐
tance between the power system nodes is selected as a mea‐
sure of the electrical distance, i. e., ρij = |Yij|, which reflects
connection degree between nodes. Considering the con‐
straints of the power grid structure can be regarded as a net‐
work smoothing constraint. This constraint refers to that the
weight difference of the input matrix of the adjacent nodes is
close to zero, so that the features learned by the adjacent
nodes are similar, as shown in (5).

Ω (θ) =∑
ij

ρ ij∑
k

( )wik - wjk

2

(5)

where Ω is the complexity index.
Convert (5) into matrix form:

Ω (θ) =∑
k

W T
k TWk (6)

where T = (Tij), when i = j, Tii =∑
i ≠ j

ρ ij, when i ≠ j, Tij = -ρ ij.

Combing (4) and (6), the loss function of SRRBM is:

min
θ

L͂ (θ,D) = L (θ) +
1
2
αΩ (θ) (7)

where α is the coefficient of penalty.
Training SRRBM only needs to change the gradient and

apply the gradient descent algorithm. Using the SRRBM as
the first-level RBM of our DBN model, the SRDBN is regu‐
larized to consider the power grid connection. From the per‐
spective of machine learning regularization, the network
smoothing constraint is similar to L2 constraint, which can re‐
duce the variance of the model, thus the new SRDBN struc‐
ture has a more robust performance on unseen scenarios and
yields better generalization ability.

III. DBN DECISION INTERPRETER

The deep learning method can provide high-precision sta‐
bility assessment results and has good model generalization

capability. However, similar to other machine learning algo‐
rithms, there is no intuitive physical interpretation for the out‐
put of deep learning. Therefore, DBN remains a “black box”
model to the system operators and cannot be deduced from
the original input features step by step like analytical method
to get the conclusion, thus it is difficult to directly interpret
the obtained results using the knowledge of power system.
Also, it is significant for operators to understand the deci‐
sions made by the DBN to trust assessment and carry out
successive emergency controls if necessary.

How to reasonably relate the input and output of deep
learning model has always been a concern in the field of ma‐
chine learning. Therefore, building an interpreter of the DBN
is as important as building the assessment model itself,
which is ignored by most of the previous studies. Essentially,
there are two criteria for judging the interpreter: interpretabil‐
ity and local fidelity [34]. To be interpretable means to pro‐
vide simple and clear qualitative relationships between the in‐
put features and the assessment decisions. Reference [27]
compares the interpretability and predictive power of several
popular machine learning models, as shown in Table II. It is
generally believed that a model with good predictive power
offers poor interpretability and vice versa. For example, the
complexity of a DT can be represented by the number of
leaves and that of a linear model is the number of non-zero
coefficients.

Another essential criterion is local fidelity. Although it is
impossible for the interpreter to be absolutely faithful with
DBN model globally, it is important to be locally faithful.
For the actual TSA problem, local fidelity means that the in‐
terpreter only needs good performance for a specific type of
fault scenario.

The interpretation of DBN model is to find a set of inter‐
preters to link the post-fault power system measurements
with the stability assessment decisions made by the DBN. To
guarantee a better interpretability, it is necessary to find a
cluster of simple functions to fit the relationship between the
original input and the DBN model output. Denoting the DBN
model as f, the simple interpreter as g and the original input
as x, then the interpretation of the DBM model is equivalent
to satisfy (8).

g (x) ≈ f (x) (8)

As discussed above, there are two requirements for inter‐
pretation function, fidelity and interpretability, which means
the model learned by explanatory function should be faithful
to the DBN as simple as possible. Thus, the requirements for
the interpretation function can be transformed into the optimi‐
zation problem as (9).

min ξ (x) = Γ ( f,g) + Ω (g) (9)

TABLE II

INTERPRETABILITY VS PREDICTIVE POWER

Parameter

Interpretability

Predictive power

NN

Poor

Good

SVM

Poor

Good

DT

Fair

Poor

Linear model

Good

Poor

Kernel

Poor

Good
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where Γ ( )f,g is the difference between f and g, which re‐
flects the accuracy of g. In this paper, a linear model is used
to interpret the DBN and the mean square error to minimize
the difference. To decrease the complexity of the interpreter,
one direct way is to limit the number of non-zero coeffi‐
cients in the linear interpreter model so that the L1 regular‐
ization is a natural choice. The interpretation method is
called local linear interpretation (LLI) as (10).

f (xi ) ≈ g (xi ) =∑
j

β j xi,j (10)

This linear model can be regarded as a first-order Taylor
expansion that ignores high-order terms. The coefficient βj of
the linear function can be interpreted as the partial derivative
of f relative to the original input feature and as the sensitivity
of input feature to the stability domain boundary from the
perspective of power system as shown in (11).

β j =
∂f
∂xi,j

xi,j (11)

The detailed steps are as follows.
1) Vicinity sampling: for a case X that needs to be inter‐

preted, randomly sample N data points (X(1), X(2), …, X(N)) in
the vicinity of the case. Use the DBN model to embed these
data points into the representation space (Z(1), Z(2), … , Z(N)),
and then assess the stability status (f ( )1 , f ( )2 , …, f ( )N ).

2) Weight assigning: in the representation space, compute
the distance between each sampled data point as d(Z, Z(j)).
The normalized weight of each sampled data point is shown
as:

Ψk = exp ( - d ( )zi,z
( )k
i

2

σ 2 ) (12)

where σ is the standard deviation of all the distance.
Equation (12) indicates that the closer the sampled data is

to the case being interpreted, the larger its normalized
weight. The weight parameter can help limit the sampled da‐
ta in the vicinity of the case being interpreted to make the in‐
terpreter more robust to noises.

3) Parameter computing: as stated above, loss function
Γ ( )f,g represents the difference between the interpreter and
the DBN and can be written as (13) using a mean square error.

Γ ( f,g) =∑
k

Ψk ( f (x( )k
i ) - g (x( )k

i )) 2

=∑
k

Ψk ( )f ( )x( )k
i -∑

j

β j x
( )k
i,j

2

(13)

And the complexity index Ω is represented by the number
of non-zero coefficients of the linear interpreter in (14).

Ω (g) =∑
j

|| β j (14)

Therefore, (9) can be written as:

min
βj

ξ (xi ) =∑
k

Ψk ( f (x( )k
i ) -∑

j

β j x
( )k
i,j )

2

+ λ∑
j

|| β j (15)

The left term of right side in (15) is the square error sum‐
mation term, and the right term is the L1 regularization term,
so the local linear interpretation can be transformed into a lin‐
ear regression problem using the L1 penalty factor, namely
the Lasso problem, and λ is the penalty parameter. Like deep
learning model, the Lasso problem can be solved optimally
using the stochastic gradient descent algorithm. Since (15) is
quadratic, optimizing (15) is very fast compared to time-do‐
main simulation.

For TSA problem, from the perspective of topology, the
stability domain boundary is a highly nonlinear surface, and
the vicinity of any point can be approached by an approxi‐
mately linear hyperplane. From the point of transient stabili‐
ty, the characteristics that are used to describe the fault are
different when the system is affected by different faults.
Therefore, it is feasible and necessary to use a linear inter‐
preter in the vicinity of each sample point while the point
and its vicinity could relate to a specific fault type and its
similar scenarios.

For every case being interpreted, optimizing (15) gives a
linear model with limited number of non-zero coefficients.
The coefficient βj indicates the contribution of a feature to
the DBN decision. It is easy to know how the features are
relevant to the stability status by comparing the value of the
coefficients, i. e., for a specific type of fault, the value of βj

shows the importance of active power on different lines for
the stability. More importantly, in the vicinity of the sample
being interpreted, the stability boundary can be locally linear‐
ized, and the coefficient βj can be regarded as the sensitivity
of the power system measurements to the stability boundary.

IV. METHODOLOGY

The flow chart of the DBN-based TSA method is proposed
in Fig. 3. The scheme includes two stages: offline training
and online assessment. In the offline training stage, DBN is
trained with simulation data. In the online assessment stage,
the DBN assessment model is triggered whenever a fault oc‐
curs. If the system is judged as unstable, the LLI interpreter
will be triggered to provide supporting information for the
emergency control strategies.

1) Offline training: to evaluate real-time transient stability,
first, the system dynamic response database should be estab‐
lished. The data is acquired from extensive transient simula‐
tion and prepared in the format of a structured data matrix X:

X =

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

P11 P12 ⋯ P1N Q11 Q12 ⋯ Q1N U11 U12 ⋯ U1M θ11 θ12 ⋯ θ1M

P21 P22 ⋯ P2N Q21 Q22 ⋯ Q2N U21 U22 ⋯ U2M θ21 θ22 ⋯ θ2M

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
PK1 PK2 ⋯ PKN QK1 QK2 ⋯ QKN UK1 UK2 ⋯ UKM θK1 θK2 ⋯ θKM

(16)

where N, M, K are the numbers of transmission lines, buses
and different cases, respectively. The data will be cleaned

and processed, including a consistency check, outlier check,
interpolation, and normalization after being acquired.
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In China, each province branch of State Grid Corporation
of China needs to perform N－1 contingency simulations for
every typical operation condition every year, which has accu‐
mulated large amounts of transient data. These data have
been used to train a practical stability assessment model for a
regional power system.

2) Online assessment: after the real-time measurements of
the corresponding variables are obtained from the wide-area
measurement system (WAMS), the stability status is immedi‐
ately predicted after the fault is cleared. If the system is as‐
sessed as unstable, the LLI interpreter is applied to compute
the importance of relevant features. As stated in Section III,
the coefficient of the LLI interpreter model can be regarded
as a qualitative criterion about how the measurements are re‐
lated to the stability status. In other words, changing the cor‐
responding features (e. g., generation or load shedding) will
help enhance the stability.

V. CASE STUDY AND DISCUSSIONS

A. Generation of Dynamic Response Database

The dynamic response database is generated by time-
domain simulations. The uncertainty of faults considered in
the paper involves the type, the location of disturbance, and
the fault clearing time. The duration of fault is chosen from a
normal distribution from 0.1 s to 0.4 s. The long fault lasting
time guarantees to generate sufficient unstable cases and pat‐
terns for NN to learn from. In the final training dataset, the
stable/unstable ratio is 1∶1.

The transient stability simulation for the IEEE test system
is carried out by the PSAT toolbox in MATLAB [35], and
those for the real power system are simulated by PSASP
[36]. The length of simulation time after fault clearing is 20
s. The system stability is judged at the end of the simulation
period. If the difference between rotor angles of any two gen‐

erators exceeds 360° at the end of simulation, the case is la‐
beled unstable, otherwise stable.

B. Case Study on Test System

The proposed method is tested on the IEEE new England
system with 10 machines and 39 buses, as shown in Fig. 4.
The fault is set to three-phase short-circuit grounding of the
line, and the fault line is removed after a period of time. In
order to avoid the occurrence of islands in the system when
the fault line is removed, 35 of 46 lines are selected to partic‐
ipate in the transient scans. The fault location is set at either
end of the line, and the fault clearing time is randomly taken
from 0.1 s to 0.4 s. P, Q of the 46 lines and V, θ of the 39 bus‐
es (angle at generator 30 is a reference) are recorded at the
fault clearing time, which form the original input feature of 1
dimension. A total of 3500 samples are generated, and the
number of stable samples is equal to the number of unstable
samples.

In the machine learning community, the term of generaliza‐
tion refers to the ability to perform well on new data. In the
specific application of TSA, the generalization means the as‐
sessment model should be robust in unseen scenarios. This
process is very important to make the model practical since
time domain simulations can not include all possible opera‐
tion states or faults. Therefore, the generated samples are di‐
vided into three sets as the ratio of 4∶1∶2. 2000 of sam‐
ples are used to learn nonlinear expression as set A, 500 are
used to learn classifier as set B, and 1000 are used for testing
as set C. In order to reflect the generalization ability of the
model, the fault type of set C does not appear in sets A and
B. The database generation takes approximately 2 hours of
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Measured active power P, 

reactive power Q, bus 

voltage U, voltage angle θ 

at fault clearing time 

Structure reserved DBN
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Is it table?
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Fig. 3. Flowchart for offline training and online assessment steps of pro‐
posed method.
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computation time on a PC with an Intel i5 CPU 3.19 GHz
clock and 2 GB RAM.

The assessment ability is evaluated by the misclassifica‐
tion rate that includes two kinds of classification errors,
namely, false dismissal (FD) and false alarm (FA). An FD oc‐
curs when an unstable case is classified as stable, whereas
FAs denote the stable cases deemed as unstable. To illustrate
the advantage of the proposed SRDBN model, three models
are trained and compared.

1) Polynomial kernel SVM: the SVM model is chosen as a
benchmark approach since SVM has achieved state-of-art per‐
formance in many TSA studies [9], [15], [16].

2) Conventional DBN: a conventional DBN is used to
learn the representations of the original data. The first layer
is the conventional RBM, which contains 170 neurons. The
network has four hidden layers, and the numbers of neurons
in each hidden layer are 1000, 2000, 500 and 30, respective‐
ly. In other words, the DBN embeds the data from the origi‐
nal 170-dimension feature space to a 30-dimension represen‐
tation space.

3) Structure reserved DBN: a SRRBM is used as the first
layer of the DBN, all network architecture and configurations
are identical to the conventional DBN in model 2.

The training is finished within 1 hour. The misclassifica‐
tion error is presented in Table III. The result shows that
DBN-based model achieves better classification performance
than the benchmark SVM method. The test results also sug‐
gest that the SRDBN performs better than the conventional
DBN with “unseen” faults, indicating that the SRDBN mod‐
el is more practical in the specific application of TSA.

In order to better show how SRDBN works, the t-distribut‐
ed stochastic neighbor embedding (t-SNE) algorithm [37] is
utilized to map the high-dimension space into a 2-dimension
space. The t-SNE is a dimensionality reduction tool that pre‐
serves distances in the high-dimension space. Thus, it is suit‐
able for the visualization of high-dimensional data. The 2-di‐
mension projection of the original feature space and the hid‐
den layer space are shown in Fig. 5 and Fig. 6. Note that for
the t-SNE algorithms, the axis and the actual point coordi‐
nates have no logical meaning, while the relative distance be‐
tween the points reflects their closeness in the high-dimen‐
sional space. From Fig. 5, the stable and unstable samples
mix with each other in the original feature space. In con‐
trast, Fig. 6 clearly shows that the samples are gradually
divided into two clusters after passing through each hidden
layer. Therefore, it is much easier to identify the unstable cas‐
es in the representation space than in the original feature
space.

In the original input space, the Euler distance between
sample points does not reflect the similarity of the samples,
while in the representation space, since the SRDBN can
learn the global and local features of transient data, the dis‐
tance of sample points can reflect the difference of instability
mode of unstable samples, as shown in Fig. 7. Three instabil‐
ity modes are marked in the figure, i. e., the generator G5
swings relative to other units of the system (mode 1), genera‐
tors G2, G3, G5 swing relative to other units (mode 2) and
generators G5, G9 swing relative to other units (mode 3).
The sample points with the same instability mode naturally
gather together, indicating that the relative distance in the
representation space reflects the similarity of the transient
features.

As for the decision interpretation of DBN, a three-phase
short-circuit fault occurring at the end of line 16-24 (Fig. 4)

TABLE III

MISCLASSIFICATION ERROR RATE OF TEST SYSTEM

Method

Polynomial kernel SVM

DBN with RBM

DBN with SRRBM

FA (%)

5.97

3.78

2.19

FD (%)

5.02

2.81

1.40

Overall (%)

5.50

3.30

1.80
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is considered. The fault lasts 0.18 s, and the system becomes
unstable after clearing the fault. Figure 8 shows result of lin‐
earization.

The left side of Fig. 8, i.e., the prediction probability indi‐
cates the stability assessment of SRDBN, while the middle
and right sides list the features most relevant to the stability
calculated by LLI. The four features listed are active power

of line 26-29, line 28-29, line 26-28 and line 29-38. The coef‐
ficient of 0.09 in the middle part of Fig. 8 is βj in LLI. P26-29 ⩽
-2.54 indicates that the active power of line 26-29 less than
-2.54 is an important reason why the sample point is as‐
sessed as unstable compared with other sample points in the
vicinity. Combined with Fig. 4, all the features are directed
to the generator G38, which is consistent with this case that
G38 swings relative to other units of the system. When the
fault occurs, by reducing the output of G38 and removing
some of the nearby bus load, G38 will be controlled back to
the steady state. Therefore, the LLI proposed in this paper
can not only find the relationship between the original input
and the assessment result, but also help guide the subsequent
emergency control.

C. Case Study on Real Power System

The method has been demonstrated on Hubei power sys‐
tem in central China, which contains 182 machines, 1300
buses and 3215 transmission lines. The one-line diagram of
the real system is shown in Fig. 9.
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The diagram only contains buses whose rated voltage is
500 kV or higher. A typical operation condition on a summer
peak day is used as the initial state of the time domain simu‐
lations. The active and reactive power of AC and DC lines as
well as the voltage magnitude and angle of buses rated 220
kV and above are recorded. Therefore, the input dimension is
2025. A total of 45000 contingencies are simulated, and all
the faults occur on important transmission lines or transform‐
ers. The samples are randomly divided into three parts at a
ratio of 6∶1∶1. 33800 samples are used to learn linear non‐
linear expression recorded as set D, 5600 are used to learn
the classifier as set E, and the other 5600 are for testing as
set F.

Similar to the test system above, the model performance is
illustrated with the three methods, except that the architec‐
ture of DBN is more complex. The model has 8 layers, and
the numbers of neurons of each layer are 1762, 3000, 4000,
6000, 4000, 2000, 1000 and 300, respectively, while the di‐
mension of the representation space is 300. Compared with
the IEEE test system, the real system has higher original in‐
put space dimensions and more complex stability boundary,
so a deeper network is structured for representation learning.
Training the SRDBN takes 3.6 GPU hours. The average as‐
sessment time is 0.1 s, and the average interpretation time is
0.8 s.

The misclassification rate is shown in Table IV and the vi‐
sualization of the original feature space and the representa‐
tion space is shown in Fig. 10. Similar conclusions can be
drawn based on the simulations in the regional power system.

In Hubei power system, the west part has the most genera‐
tion, and the east part has the most loads. A three-phase
short-circuit fault located on one of the main 500 kV trans‐
mission lines is considered, as shown in Fig. 9. The fault
will cause the oscillations to be out of step between the gen‐
erators of the west part and the east part, as shown in Fig.
11. The interpretation results show that the active power

around one 500 kV power plant (highlighted by the red cir‐
cle in Fig. 8) and two 220 kV power plants (not shown in
the figures) exceed the limit. After decreasing the correspond‐
ing power output and tripping nearby loads, the system be‐
comes stable, as shown in Fig. 12.

In addition, the effect of the uncertainty of measurement
system and possible errors is investigated by randomly set‐
ting a fraction of the input measurements to 0, which simu‐
lates the failure of a part of the measuring devices. The per‐
mutation rate is set from 1% to 30%, and 1000 experiments
are carried out for each permutation rate to compute an aver‐
age accuracy of the permuted data. The TSA accuracy after
the random permutation is shown in Fig. 13. The proposed
model can achieve an accuracy of 85% with a permutation
rate of 30%, which indicates the robustness of the proposed
method when the measurement or the communication system
encounters problems.

TABLE IV

MISCLASSIFICATION ERROR RATE OF REAL SYSTEM

Method

Polynomial kernel SVM

DBN with RBM

DBN with SRRBM

FA (%)

6.73

2.44

1.07

FD (%)

6.32

2.79

1.64

Overall (%)

6.55

2.63

1.37
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, an improved DBN-based method is proposed
to assess power system transient stability and provide guid‐
ance for emergency control when the system is unstable. The
main contributions of this paper are follows.

1) This paper proposes an improved DBN model consider‐
ing the structure of power system. By modifying the loss
function of DBN, the performance, generalization stability
and robustness of the model are improved.

2) This paper proposes an interpretation method for DBN
decision. The local linearization interpretation transforms the
nonlinear stability domain boundary fitting problem into a L1

regularized linearization fitting problem, and is equivalent to
solve the sensitivity relationship between the model output
and the original input. It indicates the most important factors
relative to system instability and can be used to guide emer‐
gency control. The proposed method overcomes the draw‐
back of human feature engineering considering the power
grid structure and has higher accuracy, robustness and inter‐
pretability when used in real-world applications, while the
conventional machine learning method can only give the
state of a post-fault system.

3) This paper shows the internal state of DBN network in
detail through visualization technology which help operators
understand, and analyzes the main pattern of system instabili‐
ty according to the actual cases. The feature separation pro‐
cess is intuitively given by the output of each hidden layer in‐
side the DBN, while the adjacent regions in the high-dimen‐
sion space reflect similar system instability pattern.

There are still a lot of research work to be carried out in
the future such as studying the meaning of each layer in
deep structural model learning, how to determine the struc‐
ture and parameters properly of the deep learning model, etc.
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